Title:
|
Disconnectedness properties of hyperspaces (English) |
Author:
|
Hernández-Gutiérrez, Rodrigo |
Author:
|
Tamariz-Mascarúa, Angel |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
52 |
Issue:
|
4 |
Year:
|
2011 |
Pages:
|
569-591 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $X$ be a Hausdorff space and let $\mathcal H$ be one of the hyperspaces $CL(X)$, $\mathcal K(X)$, $\mathcal F(X)$ or $\mathcal F_n(X)$ ($n$ a positive integer) with the Vietoris topology. We study the following disconnectedness properties for $\mathcal H$: extremal disconnectedness, being a $F'$-space, $P$-space or weak $P$-space and hereditary disconnectedness. Our main result states: if $X$ is Hausdorff and $F\subset X$ is a closed subset such that (a) both $F$ and $X-F$ are totally disconnected, (b) the quotient $X/F$ is hereditarily disconnected, then $\mathcal K(X)$ is hereditarily disconnected. We also show an example proving that this result cannot be reversed. (English) |
Keyword:
|
hyperspaces |
Keyword:
|
Vietoris topology |
Keyword:
|
$F'$-space |
Keyword:
|
$P$-space |
Keyword:
|
hereditarily disconnected |
MSC:
|
54B20 |
MSC:
|
54G05 |
MSC:
|
54G10 |
MSC:
|
54G12 |
MSC:
|
54G20 |
idZBL:
|
Zbl 1249.54024 |
idMR:
|
MR2864000 |
. |
Date available:
|
2011-12-16T13:52:33Z |
Last updated:
|
2015-02-11 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141742 |
. |
Reference:
|
[D] Dijkstra J.J.: A criterion for Erdös spaces.Proc. Edinburgh Math. Soc. (2) 48 (2005), no. 3, 595–601. Zbl 1152.54347, MR 2171187 |
Reference:
|
[E1] Engelking R.: General Topology.translated from the Polish by the author, second edition, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[E2] Engelking R.: Theory of Dimensions Finite and Infinite.Sigma Series in Pure Mathematics, 10, Heldermann, Lemgo, 1995. Zbl 0872.54002, MR 1363947 |
Reference:
|
[Er] Erdös P.: The dimension of the rational points in Hilbert space.Ann. of Math. (2) 41 (1940), 734–736. MR 0003191, 10.2307/1968851 |
Reference:
|
[GH] Gillman L., Henriksen M.: Rings of continuous functions in which every finitely generated ideal is principal.Trans. Amer. Math. Soc. 82 (1956), 366–391. Zbl 0073.09201, MR 0078980, 10.1090/S0002-9947-1956-0078980-4 |
Reference:
|
[IN] Illanes A., Nadler S.B., Jr.: Hyperspaces. Fundamentals and Recent Advances.Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, Inc., New York, 1999. Zbl 0933.54009, MR 1670250 |
Reference:
|
[Ke] Keesling J.: On the equivalence of normality and compactness in hyperspaces.Pacific J. Math. 33, 1970, 657–667. Zbl 0182.25401, MR 0267516, 10.2140/pjm.1970.33.657 |
Reference:
|
[Ku] Kunen K.: Weak $P$-points in $N^{\ast}$.Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978), pp. 741–749, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam-New York, 1980. Zbl 0435.54021, MR 0588822 |
Reference:
|
[M] Michael E.: Topologies on spaces of subsets.Trans. Amer. Math. Soc. 71, (1951), 152–182. Zbl 0043.37902, MR 0042109, 10.1090/S0002-9947-1951-0042109-4 |
Reference:
|
[P] Pol E., Pol R.: A few remarks on connected sets in hyperspaces of hereditarily disconnected spaces.Bol. Soc. Mat. Mexicana (3) 6 (2000), no. 2, 243–245. MR 1810852 |
Reference:
|
[PW] Porter J.R., Woods R.G.: Extensions and Absolutes of Hausdorff Spaces.Springer, New York, 1988. Zbl 0652.54016, MR 0918341 |
Reference:
|
[S] Shakhmatov D.B.: A pseudocompact Tychonoff space all countable subsets of which are closed and $C^\ast$-embedded.Topology Appl. 22 (1986), no. 2, 139–144. Zbl 0586.54020, MR 0836321, 10.1016/0166-8641(86)90004-0 |
. |