Previous |  Up |  Next

Article

Title: More on $\kappa$-Ohio completeness (English)
Author: Basile, D.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 4
Year: 2011
Pages: 551-559
Summary lang: English
.
Category: math
.
Summary: We study closed subspaces of $\kappa$-Ohio complete spaces and, for $\kappa$ uncountable cardinal, we prove a characterization for them. We then investigate the behaviour of products of $\kappa$-Ohio complete spaces. We prove that, if the cardinal $\kappa^+$ is endowed with either the order or the discrete topology, the space $(\kappa^+)^{\kappa^+}$ is not $\kappa$-Ohio complete. As a consequence, we show that, if $\kappa$ is less than the first weakly inaccessible cardinal, then neither the space $\omega^{\kappa^+}$, nor the space $\mathbb{R}^{\kappa^+}$ is $\kappa$-Ohio complete. (English)
Keyword: $\kappa$-Ohio complete
Keyword: compactification
Keyword: subspace
Keyword: product
MSC: 54B05
MSC: 54B10
MSC: 54D35
idZBL: Zbl 1249.54022
idMR: MR2863998
.
Date available: 2011-12-16T14:05:42Z
Last updated: 2015-02-11
Stable URL: http://hdl.handle.net/10338.dmlcz/141744
.
Reference: [1] Arhangel'skii A.V.: Remainders in compactifications and generalized metrizability properties.Topology Appl. 150 (2005), 79–90. Zbl 1075.54012, MR 2133669, 10.1016/j.topol.2004.10.015
Reference: [2] Basile D.: $\kappa $-Ohio completenss and related problems.Doctoral Thesis, Vrije Universiteit, Amsterdam, 2009.
Reference: [3] Basile D., van Mill J.: Ohio completeness and products.Topology Appl. 155 (2008), no. 4, 180–189. Zbl 1147.54012, MR 2380256, 10.1016/j.topol.2007.09.005
Reference: [4] Basile D., van Mill J., Ridderbos G.J.: Sum theorems for Ohio completeness.Colloq. Math. 113 (2008), 91–104. Zbl 1149.54014, MR 2399666, 10.4064/cm113-1-6
Reference: [5] Basile D., van Mill J., Ridderbos G.J.: $\kappa $-Ohio completeness.J. Math. Soc. Japan 61 (2009), no. 4, 1293–1301. Zbl 1186.54024, MR 2588512, 10.2969/jmsj/06141293
Reference: [6] Engelking R.: General Topology.second ed., Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [7] Glicksberg I.: Stone-Čech compactifications of products.Trans. Amer. Math. Soc. 90 (1959), 369–382. Zbl 0089.38702, MR 0105667
Reference: [8] Mycielski J.: $\alpha $-incompactness of $N^\alpha $.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 437–438. MR 0211871
Reference: [9] Okunev O., Tamariz-Mascarúa A.: On the Čech number of $C_p(X)$.Topology Appl. 137 (2004), no. 1–3, 237–249; IV Iberoamerican Conference on Topology and its Applications. Zbl 1048.54010, MR 2057890, 10.1016/S0166-8641(03)00213-X
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-4_7.pdf 487.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo