Previous |  Up |  Next

Article

Keywords:
Cayley plane; octonionic contact structure; twistor fibration; parabolic geometry; Severi varieties; hyperplane section; exceptional geometry
Summary:
We prove that the exceptional complex Lie group ${\mathrm{F}_4}$ has a transitive action on the hyperplane section of the complex Cayley plane ${\mathbb{O}\mathbb{P}}^2$. Although the result itself is not new, our proof is elementary and constructive. We use an explicit realization of the vector and spin actions of ${\mathrm{Spin}}(9,\mathbb{C})\leq {\mathrm{F}_4}$. Moreover, we identify the stabilizer of the ${\mathrm{F}_4}$-action as a parabolic subgroup ${\mathrm{P}_4}$ (with Levi factor $\mathrm{B_3T_1}$) of the complex Lie group ${\mathrm{F}_4}$. In the real case we obtain an analogous realization of ${\mathrm{F}_4}^{(-20)}/\P$.
References:
[1] Armstrong S., Biquard O.: Einstein metrics with anisotropic boundary behaviour. arXiv:0901.1051v1 [math.DG]. MR 2646355
[2] Atiyah M., Berndt J.: Projective Planes, Severi Varieties and Spheres. Surveys in Differential Geometry, International Press of Boston Inc., 2003. MR 2039984 | Zbl 1057.53040
[3] Baez J.C.: The octonions. Bull. Amer. Math. Soc. 39 (2001), no. 2, 145–205. DOI 10.1090/S0273-0979-01-00934-X | MR 1886087 | Zbl 1026.17001
[4] Biquard O.: Asymptotically Symmetric Einstein Metrics. SMF/AMS Texts and Monographs, American Mathematical Society, Providence, 2006. MR 2260400 | Zbl 1112.53001
[5] Bourbaki N.: Lie Groups and Lie Algebras. Chapters 4–6. Elements of Mathematics, Springer, Berlin, 2002. MR 1890629 | Zbl 1145.17001
[6] Čap A., Slovák J.: Parabolic Geometries: Background and General Theory. Mathematical Surveys and Monographs, AMS Bookstore, 2009. MR 2532439
[7] Dray T., Manogue C.A.: Octonionic Cayley spinors and $\mathrm{E}_6$. Comment. Math. Univ. Carolin. 51 (2010), 193–207. MR 2682473
[8] Friedrich T.: Weak Spin$(9)$-structures on $16$-dimensional Riemannian manifolds. Asian J. Math. 5 (2001), 129–160; arXiv:math/9912112v1 [math.DG]. MR 1868168 | Zbl 1021.53028
[9] Goodman R., Wallach N.R.: Representations and Invariants of the Classical Groups. Cambridge University Press, Cambridge, 1998. MR 1606831 | Zbl 1173.22001
[10] Harvey F.R.: Spinors and Calibration. Academic Press, San Diego, 1990. MR 1045637
[11] Held R., Stavrov I., VanKoten B.: (Semi-)Riemannian geometry of (para-)octonionic projective planes. Differential Geom. Appl. 27 (2009), 464–481. DOI 10.1016/j.difgeo.2009.01.007 | MR 2547826 | Zbl 1175.53064
[12] Humphreys J.E.: Linear Algebraic Groups. Graduate Texts in Mathematics, 21, Springer, 1975. MR 0396773 | Zbl 0471.20029
[13] Jacobson N.: Structure and Representations of Jordan Algebras. AMS Bookstore, 2008. Zbl 0218.17010
[14] Jordan P., von Neumann J., Wigner E.: On an algebraic generalization of the quantum mechanical formalism. Ann. of Math. (2) 35 (1934), no. 1, 29–64. DOI 10.2307/1968117 | MR 1503141 | Zbl 0008.42103
[15] Krýsl S.: Classification of $1^{st}$ order symplectic spinor operators over contact projective geometries. Differential Geom. Appl. 26 (2008), 553–565. DOI 10.1016/j.difgeo.2007.11.037 | MR 2458281
[16] Krýsl S.: Classification of $\mathfrak{p}$-homomorphisms between higher symplectic spinors. Rend. Circ. Mat. Palermo (2), Suppl. no. 79 (2006), 117–127. MR 2287131
[17] Krýsl S.: BGG diagrams for contact graded odd dimensional orthogonal geometries. Acta Univ. Carolin. Math. Phys. 45 (2004), no. 1, 67–77. MR 2109695
[18] Landsberg J.M., Manivel L.: On the projective geometry of rational homogenous varieties. Comment. Math. Helv. 78 (2003), no. 1, 65–100. MR 1966752
[19] Landsberg J.M., Manivel L.: The projective geometry of Freudenthal's magic square. J. Algebra 239 (2001), 477–512. DOI 10.1006/jabr.2000.8697 | MR 1832903 | Zbl 1064.14053
[20] van Leeuwen M.A.A., Cohen A.M., Lisser B.: LiE, A Package for Lie Group Computations. Computer Algebra Nederland, Amsterdam, 1992, available at http://www-math.univ-poitiers.fr/$\sim $maavl/LiE/.
[21] Moufang R.: Alternativkörper und der Satz vom vollständigen Vierseit. Abhandl. Math. Univ. Hamburg 9 (1933), 207–222. DOI 10.1007/BF02940648 | Zbl 0007.07205
[22] Springer T.A., Veldkamp F.D.: Octonions, Jordan Algebras and Exceptional Groups. Springer Monographs in Mathematics, Springer, Berlin, 2000. MR 1763974 | Zbl 1087.17001
[23] Yokota I.: Exceptional Lie groups. arXiv.org:0902.0431 [math.DG], 2009. Zbl 1145.22002
Partner of
EuDML logo