Previous |  Up |  Next

Article

Title: Manifold-valued generalized functions in full Colombeau spaces (English)
Author: Kunzinger, Michael
Author: Nigsch, Eduard
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 4
Year: 2011
Pages: 519-534
Summary lang: English
.
Category: math
.
Summary: We introduce the notion of generalized function taking values in a smooth manifold into the setting of full Colombeau algebras. After deriving a number of characterization results we also introduce a corresponding concept of generalized vector bundle homomorphisms and, based on this, provide a definition of tangent map for such generalized functions. (English)
Keyword: algebras of generalized functions
Keyword: manifold-valued generalized functions
Keyword: full Colombeau algebras
MSC: 26E15
MSC: 46F30
MSC: 46T30
idZBL: Zbl 1249.46042
idMR: MR2863996
.
Date available: 2011-12-16T14:26:56Z
Last updated: 2015-02-11
Stable URL: http://hdl.handle.net/10338.dmlcz/141746
.
Reference: [1] Abraham R., Marsden J.E., Ratiu T.: Manifolds, Tensor Analysis, and Applications.Applied Mathematical Sciences, 75, Springer, New York, 1988. Zbl 0875.58002, MR 0960687, 10.1007/978-1-4612-1029-0_8
Reference: [2] Clarke C.J.S., Vickers J.A., Wilson J.P.: Generalized functions and distributional curvature of cosmic strings.Classical Quantum Gravity 13 (1996), no. 9, 2485–2498. Zbl 0859.53074, MR 1410817, 10.1088/0264-9381/13/9/013
Reference: [3] Colombeau J.-F.: New Generalized Functions and Multiplication of Distributions.North-Holland Mathematics Studies, 84, North-Holland, Amsterdam, 1984. Zbl 0761.46021, MR 0738781
Reference: [4] Colombeau J.-F.: Elementary Introduction to New Generalized Functions.North-Holland Mathematics Studies, 113, North-Holland, Amsterdam, 1985. Zbl 0584.46024, MR 0808961
Reference: [5] Colombeau J.-F., Meril A.: Generalized functions and multiplication of distributions on ${\mathcal C}^\infty$ manifolds.J. Math. Anal. Appl. 186 (1994), no. 2, 357–364. MR 1292997, 10.1006/jmaa.1994.1303
Reference: [6] Dapić N., Pilipović S.: Microlocal analysis of Colombeau's generalized functions on a manifold.Indag. Math. (N.S.) 7 (1996), no. 3, 293–309. MR 1621385, 10.1016/0019-3577(96)83722-0
Reference: [7] de Roever J.W., Damsma, M.: Colombeau algebras on a $C^\infty$-manifold.Indag. Math. (N.S.) 2 (1991), no. 3, 341–358. MR 1149687, 10.1016/0019-3577(91)90022-Y
Reference: [8] Erlacher E., Grosser M.: Inversion of a “discontinuous coordinate transformation” in general relativity.Applicable Analysis(to appear). MR 2842608
Reference: [9] Grosser M., Farkas E., Kunzinger M., Steinbauer R.: On the foundations of nonlinear generalized functions I and II.Mem. Amer. Math. Soc. 153 (2001), no. 729. MR 1848157
Reference: [10] Grosser M., Kunzinger M., Oberguggenberger M., Steinbauer R.: Geometric Theory of Generalized Functions with Applications to General Relativity.Kluwer, Dordrecht, 2001. Zbl 0998.46015
Reference: [11] Grosser M., Kunzinger M., Steinbauer R., Vickers J.A.: A global theory of algebras of generalized functions.Adv. Math. 166 (2002), no. 1, 50–72. Zbl 0995.46054, MR 1882858, 10.1006/aima.2001.2018
Reference: [12] Grosser M., Kunzinger M., Steinbauer R., Vickers J.A.: A global theory of algebras of generalized functions II: tensor distributions.submitted, http://arxiv.org/abs/0902.1865.
Reference: [13] Jelinek J.: An intrinsic definition of the Colombeau generalized functions.Comment. Math. Univ. Carolin. 45 (1999), no. 1, 71–95. Zbl 1060.46513, MR 1715203
Reference: [14] Jelinek J.: Colombeau product of currents.Comment. Math. Univ. Carolin. 46 (2005), no. 3, 437–462. Zbl 1123.46025, MR 2174523
Reference: [15] Kriegl A., Michor P.: The Convenient Setting of Global Analysis.Mathematical Surveys and Monographs, 53, American Mathematical Society, Providence, 1997. Zbl 0889.58001, MR 1471480
Reference: [16] Kunzinger M.: Generalized functions valued in a smooth manifold.Monatsh. Math. 137 (2002), 31–49. Zbl 1014.46054, MR 1930994, 10.1007/s00605-002-0488-x
Reference: [17] Kunzinger M., Steinbauer R.: Foundations of a nonlinear distributional geometry.Acta Appl. Math. 71 (2002), no. 2, 179–206. Zbl 1012.46048, MR 1914741, 10.1023/A:1014554315909
Reference: [18] Kunzinger, M., Steinbauer, R., Vickers, J.A.: Intrinsic characterization of manifold-valued generalized functions.Proc. London Math. Soc. 87 (2003), no. 2, 451–470. Zbl 1042.46050, MR 1990935
Reference: [19] Kunzinger M., Steinbauer R., Vickers J.A.: Sheaves of nonlinear generalized functions and manifold-valued distributions.Trans. Amer. Math. Soc. 361 (2009), 5177–5192. Zbl 1184.46070, MR 2515808, 10.1090/S0002-9947-09-04621-2
Reference: [20] Marsden J.E.: Generalized Hamiltonian mechanics: A mathematical exposition of non-smooth dynamical systems and classical Hamiltonian mechanics.Arch. Rational Mech. Anal. 28 (1967/1968), 323–361. Zbl 0155.51302, MR 0224935
Reference: [21] Nedeljkov M., Pilipović S., Scarpalezos D.: The Linear Theory of Colombeau Generalized Functions.Pitman Research Notes in Mathematics, 385, Longman, Harlow, 1998. MR 1638310
Reference: [22] Nigsch E.: Approximation properties of local smoothing kernels.Integral Transform. Spec. Funct.(to appear). MR 2801281
Reference: [23] Oberguggenberger M.: Multiplication of distributions and applications to partial differential equations.Pitman Research Notes in Mathematics Series, 259, Longman Scientific & Technical, Harlow, 1992. Zbl 0818.46036, MR 1187755
Reference: [24] O'Neill B.: Semi-Riemannian Geometry. With Applications to Relativity.Pure and Applied Mathematics, 103, Academic Press, New York, 1983. Zbl 0531.53051, MR 0719023
Reference: [25] Parker P.E.: Distributional geometry.J. Math. Phys. 20 (1979), no. 7, 1423–1426. Zbl 0442.53064, MR 0538717, 10.1063/1.524224
Reference: [26] Steinbauer R., Vickers J.A.: The use of generalized functions and distributions in general relativity.Classical Quantum Gravity 23 (2006), no. 10, R91–R114. Zbl 1096.83001, MR 2226026, 10.1088/0264-9381/23/10/R01
Reference: [27] Vernaeve H.: Isomorphisms in algebras of Colombeau generalized functions.Monatsh. Math. 162 (2011), 225–237. MR 2769888, 10.1007/s00605-009-0152-9
Reference: [28] Vickers J., Wilson J.: A nonlinear theory of tensor distributions.ESI-Preprint 566 (http://www.esi.ac.at/ESI-Preprints.html), 1998.
Reference: [29] Vickers J.A., Wilson J.P.: Invariance of the distributional curvature of the cone under smooth diffeomorphisms.Classical Quantum Gravity 16 (1999), no. 2, 579–588. Zbl 0933.83033, MR 1672476, 10.1088/0264-9381/16/2/019
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-4_5.pdf 590.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo