Title:
|
Manifold-valued generalized functions in full Colombeau spaces (English) |
Author:
|
Kunzinger, Michael |
Author:
|
Nigsch, Eduard |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
52 |
Issue:
|
4 |
Year:
|
2011 |
Pages:
|
519-534 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We introduce the notion of generalized function taking values in a smooth manifold into the setting of full Colombeau algebras. After deriving a number of characterization results we also introduce a corresponding concept of generalized vector bundle homomorphisms and, based on this, provide a definition of tangent map for such generalized functions. (English) |
Keyword:
|
algebras of generalized functions |
Keyword:
|
manifold-valued generalized functions |
Keyword:
|
full Colombeau algebras |
MSC:
|
26E15 |
MSC:
|
46F30 |
MSC:
|
46T30 |
idZBL:
|
Zbl 1249.46042 |
idMR:
|
MR2863996 |
. |
Date available:
|
2011-12-16T14:26:56Z |
Last updated:
|
2015-02-11 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141746 |
. |
Reference:
|
[1] Abraham R., Marsden J.E., Ratiu T.: Manifolds, Tensor Analysis, and Applications.Applied Mathematical Sciences, 75, Springer, New York, 1988. Zbl 0875.58002, MR 0960687, 10.1007/978-1-4612-1029-0_8 |
Reference:
|
[2] Clarke C.J.S., Vickers J.A., Wilson J.P.: Generalized functions and distributional curvature of cosmic strings.Classical Quantum Gravity 13 (1996), no. 9, 2485–2498. Zbl 0859.53074, MR 1410817, 10.1088/0264-9381/13/9/013 |
Reference:
|
[3] Colombeau J.-F.: New Generalized Functions and Multiplication of Distributions.North-Holland Mathematics Studies, 84, North-Holland, Amsterdam, 1984. Zbl 0761.46021, MR 0738781 |
Reference:
|
[4] Colombeau J.-F.: Elementary Introduction to New Generalized Functions.North-Holland Mathematics Studies, 113, North-Holland, Amsterdam, 1985. Zbl 0584.46024, MR 0808961 |
Reference:
|
[5] Colombeau J.-F., Meril A.: Generalized functions and multiplication of distributions on ${\mathcal C}^\infty$ manifolds.J. Math. Anal. Appl. 186 (1994), no. 2, 357–364. MR 1292997, 10.1006/jmaa.1994.1303 |
Reference:
|
[6] Dapić N., Pilipović S.: Microlocal analysis of Colombeau's generalized functions on a manifold.Indag. Math. (N.S.) 7 (1996), no. 3, 293–309. MR 1621385, 10.1016/0019-3577(96)83722-0 |
Reference:
|
[7] de Roever J.W., Damsma, M.: Colombeau algebras on a $C^\infty$-manifold.Indag. Math. (N.S.) 2 (1991), no. 3, 341–358. MR 1149687, 10.1016/0019-3577(91)90022-Y |
Reference:
|
[8] Erlacher E., Grosser M.: Inversion of a “discontinuous coordinate transformation” in general relativity.Applicable Analysis(to appear). MR 2842608 |
Reference:
|
[9] Grosser M., Farkas E., Kunzinger M., Steinbauer R.: On the foundations of nonlinear generalized functions I and II.Mem. Amer. Math. Soc. 153 (2001), no. 729. MR 1848157 |
Reference:
|
[10] Grosser M., Kunzinger M., Oberguggenberger M., Steinbauer R.: Geometric Theory of Generalized Functions with Applications to General Relativity.Kluwer, Dordrecht, 2001. Zbl 0998.46015 |
Reference:
|
[11] Grosser M., Kunzinger M., Steinbauer R., Vickers J.A.: A global theory of algebras of generalized functions.Adv. Math. 166 (2002), no. 1, 50–72. Zbl 0995.46054, MR 1882858, 10.1006/aima.2001.2018 |
Reference:
|
[12] Grosser M., Kunzinger M., Steinbauer R., Vickers J.A.: A global theory of algebras of generalized functions II: tensor distributions.submitted, http://arxiv.org/abs/0902.1865. |
Reference:
|
[13] Jelinek J.: An intrinsic definition of the Colombeau generalized functions.Comment. Math. Univ. Carolin. 45 (1999), no. 1, 71–95. Zbl 1060.46513, MR 1715203 |
Reference:
|
[14] Jelinek J.: Colombeau product of currents.Comment. Math. Univ. Carolin. 46 (2005), no. 3, 437–462. Zbl 1123.46025, MR 2174523 |
Reference:
|
[15] Kriegl A., Michor P.: The Convenient Setting of Global Analysis.Mathematical Surveys and Monographs, 53, American Mathematical Society, Providence, 1997. Zbl 0889.58001, MR 1471480 |
Reference:
|
[16] Kunzinger M.: Generalized functions valued in a smooth manifold.Monatsh. Math. 137 (2002), 31–49. Zbl 1014.46054, MR 1930994, 10.1007/s00605-002-0488-x |
Reference:
|
[17] Kunzinger M., Steinbauer R.: Foundations of a nonlinear distributional geometry.Acta Appl. Math. 71 (2002), no. 2, 179–206. Zbl 1012.46048, MR 1914741, 10.1023/A:1014554315909 |
Reference:
|
[18] Kunzinger, M., Steinbauer, R., Vickers, J.A.: Intrinsic characterization of manifold-valued generalized functions.Proc. London Math. Soc. 87 (2003), no. 2, 451–470. Zbl 1042.46050, MR 1990935 |
Reference:
|
[19] Kunzinger M., Steinbauer R., Vickers J.A.: Sheaves of nonlinear generalized functions and manifold-valued distributions.Trans. Amer. Math. Soc. 361 (2009), 5177–5192. Zbl 1184.46070, MR 2515808, 10.1090/S0002-9947-09-04621-2 |
Reference:
|
[20] Marsden J.E.: Generalized Hamiltonian mechanics: A mathematical exposition of non-smooth dynamical systems and classical Hamiltonian mechanics.Arch. Rational Mech. Anal. 28 (1967/1968), 323–361. Zbl 0155.51302, MR 0224935 |
Reference:
|
[21] Nedeljkov M., Pilipović S., Scarpalezos D.: The Linear Theory of Colombeau Generalized Functions.Pitman Research Notes in Mathematics, 385, Longman, Harlow, 1998. MR 1638310 |
Reference:
|
[22] Nigsch E.: Approximation properties of local smoothing kernels.Integral Transform. Spec. Funct.(to appear). MR 2801281 |
Reference:
|
[23] Oberguggenberger M.: Multiplication of distributions and applications to partial differential equations.Pitman Research Notes in Mathematics Series, 259, Longman Scientific & Technical, Harlow, 1992. Zbl 0818.46036, MR 1187755 |
Reference:
|
[24] O'Neill B.: Semi-Riemannian Geometry. With Applications to Relativity.Pure and Applied Mathematics, 103, Academic Press, New York, 1983. Zbl 0531.53051, MR 0719023 |
Reference:
|
[25] Parker P.E.: Distributional geometry.J. Math. Phys. 20 (1979), no. 7, 1423–1426. Zbl 0442.53064, MR 0538717, 10.1063/1.524224 |
Reference:
|
[26] Steinbauer R., Vickers J.A.: The use of generalized functions and distributions in general relativity.Classical Quantum Gravity 23 (2006), no. 10, R91–R114. Zbl 1096.83001, MR 2226026, 10.1088/0264-9381/23/10/R01 |
Reference:
|
[27] Vernaeve H.: Isomorphisms in algebras of Colombeau generalized functions.Monatsh. Math. 162 (2011), 225–237. MR 2769888, 10.1007/s00605-009-0152-9 |
Reference:
|
[28] Vickers J., Wilson J.: A nonlinear theory of tensor distributions.ESI-Preprint 566 (http://www.esi.ac.at/ESI-Preprints.html), 1998. |
Reference:
|
[29] Vickers J.A., Wilson J.P.: Invariance of the distributional curvature of the cone under smooth diffeomorphisms.Classical Quantum Gravity 16 (1999), no. 2, 579–588. Zbl 0933.83033, MR 1672476, 10.1088/0264-9381/16/2/019 |
. |