Previous |  Up |  Next

Article

Title: Information Measure for Vague Symbols (English)
Author: Mareš, Milan
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 50
Issue: 2
Year: 2011
Pages: 89-94
Summary lang: English
.
Category: math
.
Summary: The structures of the fuzzy information theory are focused on the concept of fuzzy entropy, where the individual information of symbols is considered only implicitely. This paper aims to fill this gap and to study the concepts of fuzzy information. Special attention is paid to the typical fuzzy set theoretical paradigma of monotonicity of operations. (English)
Keyword: information source
Keyword: alphabet
Keyword: fuzzy information
Keyword: vague information
Keyword: information measures
Keyword: symbol
Keyword: fuzzy entropy
MSC: 03E72
MSC: 62B86
MSC: 94A17
idZBL: Zbl 1244.94023
idMR: MR2920710
.
Date available: 2011-12-16T14:50:40Z
Last updated: 2013-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/141756
.
Reference: [1] De Luca, A., Termini, S.:: A definition of a non-probabilistic entropy in the setting of fuzzy set theory. Information and Control 20 (1972), 301–312. MR 0327383, 10.1016/S0019-9958(72)90199-4
Reference: [2] Forte, B.: Measures of information. The general axiomatic theory. RAIRO Information Theory, Appl. 3 (1979), 63–90. MR 0260479
Reference: [3] Kampé de Fériet, J.-M.: La théorie general de l’information et la mesure subjective de l’information. In: Lecture Notes in Math. 398 Springer Verlag, Heidelberg, 1974, 1–35.
Reference: [4] Kolesárová, A., Vivona, D.: Entropy of T-sums and T-products of L-R fuzzy numbers. Kybernetika 37 (2001), 127–145. Zbl 1265.03020, MR 1839223
Reference: [5] Mareš, M.: Weak arithmetics of fuzzy numbers. Fuzzy Sets and Systems 91, 2 (1997), 143–154. MR 1480041, 10.1016/S0165-0114(97)00136-X
Reference: [6] Mareš, M.: Information measures and uncertainty of particular symbols. Kybernetika 46, 1 (2011), 144–163. Zbl 1208.94036, MR 2807870
Reference: [7] Mareš, M.: Entropies of vague information sources. Kybernetika (submitted).
Reference: [8] Shannon, C. E., Weaver, W.: A mathematical theory of communication. Bell. Syst. Techn. J. 27 (1948), 379–423, 623–653. MR 0026286, 10.1002/j.1538-7305.1948.tb01338.x
Reference: [9] Zadeh, L. A.: Fuzzy sets. Information and Control 8, 3 (1965), 338–353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
.

Files

Files Size Format View
ActaOlom_50-2011-2_9.pdf 189.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo