Previous |  Up |  Next

Article

Title: Overview of Recent Results in Growth-curve-type Multivariate Linear Models (English)
Author: Žežula, Ivan
Author: Klein, Daniel
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 50
Issue: 2
Year: 2011
Pages: 137-146
Summary lang: English
.
Category: math
.
Summary: The Extended Growth Curve Model (ECGM) is a multivariate linear model connecting different multivariate regression models in sample subgroups through common variance matrix. It has the form: \[ Y=\sum ^{k}_{i=1}X_iB_iZ_i^{\prime }+e, \quad \operatorname{vec}(e)\sim N_{n\times p}\left(0,\Sigma \otimes I_n\right). \] Here, matrices $X_i$ contain subgroup division indicators, and $Z_i$ corresponding regressors. If $k=1$, we speak about (ordinary) Growth Curve Model. The model has already its age (it dates back to 1964), but it has many important applications. That is why it is still intensively studied. Many articles investigating different aspects or special cases of the model appeared in recent years. We will try to summarize the progress done so far. (English)
Keyword: growth curve model
Keyword: extended growth curve model
Keyword: multivariate linear model
MSC: 62-02
MSC: 62H99
idZBL: Zbl 1244.62080
idMR: MR2920716
.
Date available: 2011-12-16T14:59:07Z
Last updated: 2013-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/141762
.
Reference: [1] Åsenblad, N., Rosen, D. von: Analysis of cross-over designs via growth curve models. Journal of Statistical Planning and Inference 136 (2006), 475–497. MR 2211351, 10.1016/j.jspi.2004.06.061
Reference: [2] Bhattacharya, S., Basu, A., Bandyopadhyay, S.: Goodness-of-fit testing for exponential polynomial growth curves. Communications in Statistics – Theory and Methods 38 (2009), 340–363. Zbl 1159.62011, MR 2510788
Reference: [3] Bochniak, A., Wesołowska-Janczarek, M.: On influence of variability in concomitant variables values on estimation of polynomial coefficients in growth curves models with concomitant variables changing in time and the same values for all experimental units. Colloquium Biometricum 40 (2010), 135–145.
Reference: [4] Fang, K. T., Wang, S. G., Rosen, D. von: Restricted expected multivariate least squares. Journal of Multivariate Analysis 97 (2006), 619–632. MR 2236493, 10.1016/j.jmva.2005.03.016
Reference: [5] Fujikoshi, Y., Rosen, D. von: LR tests for random-coefficient covariance structures in an extended growth curve model. Journal of Multivariate Analysis 75 (2000), 245–268. MR 1802550, 10.1006/jmva.2000.1907
Reference: [6] Hamid, J. S., Beyene, J., Rosen, D. von: A novel trace test for the mean parameters in a multivariate growth curve model. Journal of Multivariate Analysis 102 (2011), 238–251. MR 2739112, 10.1016/j.jmva.2010.09.001
Reference: [7] Heinen, M.: Analytical growth equations and their Genstat 5 equivalents. Netherlands Journal of Agricultural Science 47 (1999), 67–89.
Reference: [8] Hu, J.: Properties of the explicit estimators in the Extended Growth Curve Model. Statistics 44, 5 (2009), 477–492. MR 2739406, 10.1080/02331880903236884
Reference: [9] Hu, J., Yan, G.: Asymptotic normality and consistency of a two-stage generalized least squares estimator in the growth curve model. Bernoulli 14, 3 (2008), 623–636. Zbl 1155.62014, MR 2537805, 10.3150/08-BEJ128
Reference: [10] Kanda, T., Ohtaki, M., Fujikoshi, Y.: Simultaneous confidence regions in an Extended Growth Curve Model with $k$ hierarchical within-individuals design matrices. Communications in Statistics – Theory and Methods 31, 9 (2002), 1605–1616. Zbl 1009.62043, MR 1925084, 10.1081/STA-120013015
Reference: [11] Klein, D., Žežula, I.: On uniform correlation structure. In: Mathematical Methods In Economics And Industry, conference proceedings, Herl’any, Slovakia (2007), 94–100.
Reference: [12] Klein, D., Žežula, I.: The maximum likelihood estimators in the growth curve model with serial covariance structure. Journal of Statistical Planning and Inference 139 (2009), 3270–3276. MR 2535199, 10.1016/j.jspi.2009.03.011
Reference: [13] Kollo, T., Roos, A., Rosen, D. von: Aproximation of the distribution of the location parameters in the Growth Curve Model. Scandinavian Journal of Statistics 34 (2007), 499–510. MR 2368795, 10.1111/j.1467-9469.2006.00546.x
Reference: [14] Kollo, T., Rosen, D. von: Advanced multivariate statistics with matrices. Springer, Dordrecht, 2005. MR 2162145
Reference: [15] Kollo, T., Rosen, D. von: Distribution and density approximation of the covariance matrix in the growth curve model. Statistics 35, 1 (2000), 1–22. MR 1820821, 10.1080/02331880108802722
Reference: [16] Kubáček, L.: Multivariate models with constraints confidence regions. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 47 (2008), 83–100. Zbl 1165.62043, MR 2482719
Reference: [17] Lin, S. H., Lee, J. C.: Exact tests in simple growth curve models and one-way ANOVA with equicorrelation error structure. Journal of Multivariate Analysis 84 (2003), 351–368. Zbl 1014.62067, MR 1965227, 10.1016/S0047-259X(02)00060-X
Reference: [18] Mentz, G. B., Kshirsagar, A. M.: Sum of profiles model with exchangeably distributed errors. Communications in Statistics – Theory and Methods 32, 8 (2003), 1591–1605. Zbl 1184.62090, MR 1996796, 10.1081/STA-120022246
Reference: [19] Nummi, T.: Analysis of growth curves under measurement errors. Journal of Applied Statistics 27, 2 (2000), 235–243. Zbl 0941.62066, MR 1743460, 10.1080/02664760021763
Reference: [20] Nummi, T., Koskela, L.: Analysis of growth curve data by using cubic smoothing splines. Journal of Applied Statistics 35, 6 (2008), 681–691. Zbl 1147.62051, MR 2516865, 10.1080/02664760801923964
Reference: [21] Nummi, T., Möttönen, J.: On the analysis of multivariate growth curves. Metrika 52 (2000), 77–89. MR 1791926, 10.1007/s001840000063
Reference: [22] Ohlson, M., Andrushchenko, Z., Rosen, D. von: Explicit estimators under m-dependence for a multivariate normal distribution. Annals of the Institute of Statistical Mathematics 63 (2011), 29–42. MR 2748932, 10.1007/s10463-008-0213-1
Reference: [23] Ohlson, M., Rosen, D. von: Explicit estimators of parameters in the Growth Curve Model with linearly structured covariance matrices. Journal of Multivariate Analysis 101 (2010), 1284–1295. MR 2595308, 10.1016/j.jmva.2009.12.023
Reference: [24] Pihlak, M.: Approximation of multivariate distribution functions. Mathematica Slovaca 58, 5 (2008), 635–652. Zbl 1195.62008, MR 2434683, 10.2478/s12175-008-0099-7
Reference: [25] Potthoff, R. F., Roy, S. N.: A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika 51, 3-4 (1964), 313–326. Zbl 0138.14306, MR 0181062
Reference: [26] Rao Chaganty, N.: Analysis of growth curves with patterned correlation matrices using quasi-least squares. Journal of Statistical Planning and Inference 117 (2003), 123–139. MR 2001145, 10.1016/S0378-3758(02)00362-2
Reference: [27] Rao Chaganty, N.: An alternative approach to the analysis of longitudinal data via generalized estimating equations. Journal of Statistical Planning and Inference 63 (1997), 39–54. MR 1474184, 10.1016/S0378-3758(96)00203-0
Reference: [28] Reinsel, G. C., Velu, R. P.: Reduced-rank growth curve models. Journal of Statistical Planning and Inference 114 (2003), 107–129. Zbl 1011.62056, MR 1980874, 10.1016/S0378-3758(02)00466-4
Reference: [29] Roy, A., Khattree, R.: On implementation of a test for Kronecker product covariance structure for multivariate repeated measures data. Statistical Methodology 2 (2005), 297–306. Zbl 1248.62092, MR 2205602, 10.1016/j.stamet.2005.07.003
Reference: [30] Rusnačko, R.: The comparison of two estimators of variance parameters in a special growth curve model. Forum Statisticum Slovacum 6, 5 (2010), 204–209.
Reference: [31] Satoh, K., Ohtaki, M.: Nonparametric growth curve model with local linear approximation. Communications in Statistics – Theory and Methods 35, 4 (2006), 641–648. Zbl 1093.62046, MR 2256245, 10.1080/03610920500498790
Reference: [32] Srivastava, M.: Nested Growth Curve Models. Sankhyā A 64, 2 (2002), 379–408. Zbl 1192.62156, MR 1981765
Reference: [33] Srivastava, M., Rosen, T. von, Rosen, D. von: Models with a Kronecker product covariance structure: estimation and testing. Mathematical Methods of Statistics 17, 4 (2008), 357–370. MR 2483463, 10.3103/S1066530708040066
Reference: [34] Srivastava, M., Rosen, D. von: Regression models with unknown singular covariance matrix. Linear Algebra and its Applications 354 (2002), 255–273. MR 1927661
Reference: [35] Vasdekis, V. G. S.: A comparison of REML and covariance adjustment method in the estimation of growth curve models. Communications in Statistics — Theory and Methods 37, 20 (2008), 3287–3297. MR 2467767
Reference: [36] Wawrzosek, J., Wesołowska-Janczarek, M.: Testability and estimability in multivariate linear normal model with various restrictions. Communications in Statistics – Theory and Methods 38 (2009), 828–841. MR 2522531
Reference: [37] Wesołowska-Janczarek, M.: Selected models and methods of parameter estimation in growth curves with concomitant variables. Colloquium Biometricum 39 (2009), 21–31.
Reference: [38] Wesołowska-Janczarek, M., Kolczyńska, E.: Comparison of two estimation methods in growth curve model with concomitant variables. Colloquium Biometricum 38 (2008), 135–149.
Reference: [39] Wong, C. S., Cheng, H.: Estimation in a growth curve model with singular covariance. Journal of Statistical Planning and Inference 97 (2001), 323–342. Zbl 1015.62056, MR 1861157, 10.1016/S0378-3758(00)00220-2
Reference: [40] Wu, Q. G.: Existence conditions of the uniformly minimum risk unbiased estimators in extended growth curve models. Journal of Statistical Planning and Inference 69 (1998), 101–114. Zbl 0924.62057, MR 1631157, 10.1016/S0378-3758(97)00119-5
Reference: [41] Wu, Q. G.: Some results on parameter estimation in extended growth curve models. Journal of Statistical Planning and Inference 88 (2000), 285–300. Zbl 0951.62045, MR 1792046, 10.1016/S0378-3758(00)00084-7
Reference: [42] Wu, X. Y., Liang, H., Zou, G. H.: Unbiased invariant least squares estimation in a generalized growth curve model. Sankhyā A 71, 1 (2009), 73–93. Zbl 1193.62100, MR 2579649
Reference: [43] Wu, H., Zhang J. T.: Local polynomial mixed-effects models for longitudinal data. Journal of the American Statistical Association 97, 459 (2002), 883–897. Zbl 1048.62048, MR 1941417
Reference: [44] Wu, X. Y., Zou, G. H., Chen, J. W.: Unbiased invariant minimum norm estimation in generalized growth curve model. Journal of Multivariate Analysis 97 (2006), 1718–1741. Zbl 1112.62054, MR 2298885, 10.1016/j.jmva.2006.05.007
Reference: [45] Wu, X. Y., Zou, G. H., Li, Y. F.: Uniformly minimum variance nonnegative quadratic unbiased estimation in a generalized growth curve model. Journal of Multivariate Analysis 100 (2009), 1061–1072. Zbl 1157.62035, MR 2498732, 10.1016/j.jmva.2008.10.007
Reference: [46] Xu, L., Stoica, P., Li, J.: A diagonal growth curve model and some signal-processing applications. IEEE Transactions on Signal Processing 54, 9 (2006), 3363–3371. 10.1109/TSP.2006.879296
Reference: [47] Xu, L., Stoica, P., Li, J.: A block-diagonal growth curve model. Digital Signal Processing 16 (2006), 902–912. 10.1016/j.dsp.2006.05.005
Reference: [48] Yang, G. Q., Wu, Q. G.: Existence conditions for the uniformly minimum risk unbiased estimators in a class of linear models. Journal of Multivariate Analysis 88 (2004), 76–88. Zbl 1032.62063, MR 2021861, 10.1016/S0047-259X(03)00058-7
Reference: [49] Ye, R. D., Wang, S. G.: Estimating parameters in Extended Growth Curve Models with special covariance structures. Journal of Statistical Planning and Inference 139 (2009), 2746–2756. Zbl 1162.62055, MR 2523663, 10.1016/j.jspi.2008.12.012
Reference: [50] Yokoyama, T.: Estimation in a random effects model with parallel polynomial growth curves. Hiroshima Mathematical Journal 31 (2001), 425–433. Zbl 0989.62034, MR 1870985
Reference: [51] Žežula, I.: Special variance structures in the growth curve model. Journal of Multivariate Analysis 97 (2006), 606–618. Zbl 1101.62042, MR 2236492, 10.1016/j.jmva.2005.10.001
Reference: [52] Žežula, I., Klein, D.: Orthogonal decompositions in growth curve models. Acta et Commentationes Universitatis Tartuensis de Mathematica 14 (2010), 35–44. Zbl 1228.62065, MR 2816617
.

Files

Files Size Format View
ActaOlom_50-2011-2_15.pdf 242.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo