Previous |  Up |  Next

Article

Title: On the convergence of the ensemble Kalman filter (English)
Author: Mandel, Jan
Author: Cobb, Loren
Author: Beezley, Jonathan D.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 6
Year: 2011
Pages: 533-541
Summary lang: English
.
Category: math
.
Summary: Convergence of the ensemble Kalman filter in the limit for large ensembles to the Kalman filter is proved. In each step of the filter, convergence of the ensemble sample covariance follows from a weak law of large numbers for exchangeable random variables, the continuous mapping theorem gives convergence in probability of the ensemble members, and $L^{p}$ bounds on the ensemble then give $L^{p}$ convergence. (English)
Keyword: data assimilation
Keyword: ensemble
Keyword: asymptotics
Keyword: convergence
Keyword: filtering
Keyword: exchangeable random variables
MSC: 60F05
MSC: 60F25
MSC: 60G09
MSC: 62M20
MSC: 93E11
idZBL: Zbl 1248.62164
idMR: MR2886236
DOI: 10.1007/s10492-011-0031-2
.
Date available: 2011-12-16T15:03:23Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141765
.
Reference: [1] Anderson, B. D. O., Moore, J. B.: Optimal Filtering.Prentice-Hall Englewood Cliffs (1979). Zbl 0688.93058
Reference: [2] Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation.Monthly Weather Review 129 (1999), 2884-2903. 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
Reference: [3] Beezley, J. D.: High-dimensional data assimilation and morphing ensemble Kalman filters with applications in wildfire modeling.PhD. Thesis Department of Mathematical and Statistical Sciences University of Colorado Denver (2009),\hfil http://math.cudenver.edu/ {jbeezley/jbeezley\_thesis.pdf}. MR 2713197
Reference: [4] Billingsley, P.: Probability and Measure, 3rd edition.John Wiley & Sons Inc. New York (1995). MR 1324786
Reference: [5] Burgers, G., Leeuwen, P. J. van, Evensen, G.: Analysis scheme in the ensemble Kalman filter.Monthly Weather Review 126 (1998), 1719-1724. 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
Reference: [6] Butala, M. D., Frazin, R. A., Chen, Y., Kamalabadi, F.: Tomographic imaging of dynamic objects with the ensemble Kalman filter.IEEE Trans. Image Proces. 18 (2009), 1573-1587. MR 2751057, 10.1109/TIP.2009.2017996
Reference: [7] Evensen, G.: Data Assimilation: The Ensemble Kalman Filter.Springer Berlin (2007). Zbl 1157.86001, MR 2555209
Reference: [8] Frazin, R. A., Butala, M. D., Kemball, A., Kamalabadi, F.: Time-dependent reconstruction of nonstationary objects with tomographic or interferometric measurements.Astrophys. J. 635 (2005), L197--L200. 10.1086/499431
Reference: [9] Furrer, R., Bengtsson, T.: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants.J. Multivariate Anal. 98 (2007), 227-255. Zbl 1105.62091, MR 2301751, 10.1016/j.jmva.2006.08.003
Reference: [10] Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability.Cambridge University Press Cambridge (2003).
Reference: [11] Gland, F. Le, Monbet, V., Tran, V.-D.: Large Sample Asymptotics for the Ensemble Kalman Filter. Research Report RR-7014, INRIA, August 2009.\hfil http://hal.inria.fr/inria-00409060/en/.
Reference: [12] Li, J., Xiu, D.: On numerical properties of the ensemble Kalman filter for data assimilation.Comput. Methods Appl. Mech. Eng. 197 (2008), 3574-3583. Zbl 1195.93137, MR 2449176, 10.1016/j.cma.2008.03.022
Reference: [13] Mandel, J., Beezley, J. D.: An ensemble Kalman-particle predictor-corrector filter for non-Gaussian data assimilation. ICCS 2009.Lecture Notes in Computer Science, Vol. 5545 G. Allen, J. Nabrzyski, E. Seidel, G. D. van Albada, J. Dongarra, P. M. A. Sloot Springer (2009), 470-478. MR 2572378, 10.1007/978-3-642-01973-9_53
Reference: [14] Mandel, J., Cobb, L., Beezley, J. D.: On the convergence of the ensemble Kalman filter.University of Colorado Denver CCM Report 278, January 2009 \hfil http://www.arXiv.org/abs/0901.2951.
Reference: [15] Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., Whitaker, J. S.: Ensemble square root filters.Monthly Weather Review 131 (2003), 1485-1490. 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2
Reference: [16] Vaart, A. W. Van der: Asymptotic Statistics.Cambridge University Press Cambridge (2000).
Reference: [17] Vodacek, A., Li, Y., Garrett, A. J.: Remote sensing data assimilation in environmental models.In: AIPR '08: Proceedings of the 2008 37th IEEE Applied Imagery Pattern Recognition Workshop IEEE Computer Society Washington (2008), 1-5.
.

Files

Files Size Format View
AplMat_56-2011-6_2.pdf 250.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo