Previous |  Up |  Next


Title: Finite element derivative interpolation recovery technique and superconvergence (English)
Author: Zhang, Tie
Author: Zhang, Shuhua
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 6
Year: 2011
Pages: 513-531
Summary lang: English
Category: math
Summary: A new finite element derivative recovery technique is proposed by using the polynomial interpolation method. We show that the recovered derivatives possess superconvergence on the recovery domain and ultraconvergence at the interior mesh points for finite element approximations to elliptic boundary problems. Compared with the well-known Z-Z patch recovery technique, the advantage of our method is that it gives an explicit recovery formula and possesses the ultraconvergence for the odd-order finite elements. Finally, some numerical examples are presented to illustrate the theoretical analysis. (English)
Keyword: finite element method
Keyword: derivative recovery technique
Keyword: superconvergence and ultraconvergence
Keyword: elliptic boundary problems
Keyword: numerical examples
MSC: 35J25
MSC: 65D25
MSC: 65M60
MSC: 65N12
MSC: 65N30
idZBL: Zbl 1249.65258
idMR: MR2886235
DOI: 10.1007/s10492-011-0030-3
Date available: 2011-12-16T15:01:28Z
Last updated: 2020-07-02
Stable URL:
Reference: [1] Chen, C. M., Huang, Y. Q.: High Accuracy Theory of Finite Element Methods.Hunan Science Press Hunan (1995), Chinese.
Reference: [2] Cairlet, P. G.: The Finite Element Methods for Elliptic Problems.North-Holland Publishing Amsterdam (1978).
Reference: [3] Hinton, E., Campbell, J. S.: Local and global smoothing of discontinuous finite element functions using a least squares method.Int. J. Numer. Methods Eng. 8 (1974), 461-480. Zbl 0286.73066, MR 0411120, 10.1002/nme.1620080303
Reference: [4] Křížek, M., Neittaanmäki, P., (eds.), R. Stenberg: Finite Element Methods. Superconvergence, Postprocessing, and a Posteriori Estimates. Lecture Notes in Pure and Appl. Math., Vol. 196.Marcel Dekker New York (1998). MR 1602809
Reference: [5] Lin, Q., Zhu, Q. D.: The Preprocessing and Postprocessing for Finite Element Methods.Shanghai Sci. & Tech. Publishers Shanghai (1994), Chinese.
Reference: [6] Oden, J. T., Brauchli, H. J.: On the calculation of consistent stress distributions in finite element applications.Int. J. Numer. Methods Eng. 3 (1971), 317-325. 10.1002/nme.1620030303
Reference: [7] Turner, M. J., Martin, H. C., Weikel, B. C.: Further developments and applications of stiffness method.Matrix Meth. Struct. Analysis 72 (1964), 203-266.
Reference: [8] Wahlbin, L. B.: Superconvergence in Galerkin Finite Element Methods. Lecture Notes in Mathematics, Vol. 1605.Springer Berlin (1995). MR 1439050
Reference: [9] Wilson, E. L.: Finite element analysis of two-dimensional structures.PhD. Thesis University of California Berkeley (1963).
Reference: [10] Wang, Z. X., Guo, D. R.: Special Functions.World Scientific Singapore (1989). Zbl 0724.33001, MR 1034956
Reference: [11] Zienkiewicz, O. C., Zhu, J. Z.: The superconvergence patch recovery and a posteriori error estimates. Part 1: The recovery technique.Int. J. Numer. Methods Eng. 33 (1992), 1331-1364. MR 1161557, 10.1002/nme.1620330702
Reference: [12] Zhang, Z.: Recovery techniques in finite element methods.Adaptive Computations: Theory and Algorithms T. Tang, J. C. Xu Science Press Beijing (2007).
Reference: [13] Zhang, Z.: Ultraconvergence of the patch recovery technique II.Math. Comput. 69 (2000), 141-158. Zbl 0936.65132, MR 1680911, 10.1090/S0025-5718-99-01205-3
Reference: [14] Zhang, T., Lin, Y. P., Tait, R. J.: The derivative patch interpolation recovery technique for finite element approximations.J. Comput. Math. 22 (2004), 113-122. MR 2027918
Reference: [15] Zhang, T., Li, C. J., Nie, Y. Y.: Derivative superconvergence of linear finite elements by recovery techniques.Dyn. Contin. Discrete Impuls. Syst., Ser. A 11 (2004), 853-862. Zbl 1059.65096, MR 2077127
Reference: [16] Zhang, T.: Finite Element Methods for Evolutionary Integro-Differential Equations.Northeastern University Press Shenyang (2002), Chinese.
Reference: [17] Zhu, Q. D., Meng, L. X.: New structure of the derivative recovery technique for odd-order rectangular finite elements and ultraconvergence.Science in China, Ser. A, Mathematics 34 (2004), 723-731 Chinese.
Reference: [18] Zhu, Q. D., Lin, Q.: Superconvergence Theory of Finite Element Methods.Hunan Science Press Hunan (1989), Chinese.


Files Size Format View
AplMat_56-2011-6_1.pdf 302.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo