Previous |  Up |  Next

Article

Title: A certain integral-recurrence equation with discrete-continuous auto-convolution (English)
Author: Cîrnu, Mircea I.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 4
Year: 2011
Pages: 245-250
Summary lang: English
.
Category: math
.
Summary: Laplace transform and some of the author’s previous results about first order differential-recurrence equations with discrete auto-convolution are used to solve a new type of non-linear quadratic integral equation. This paper continues the author’s work from other articles in which are considered and solved new types of algebraic-differential or integral equations. (English)
Keyword: integral-recurrence equation
Keyword: first order differential recurrence equations
Keyword: discrete-continuous convolution
Keyword: combinatorial discrete-continuous convolution
Keyword: auto-convolution
Keyword: Laplace transform
MSC: 44A10
MSC: 45G10
idZBL: Zbl 1249.45007
idMR: MR2876946
.
Date available: 2011-12-16T15:11:15Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141771
.
Reference: [1] Cîrnu, M.: First order differential recurrence equations with discrete auto–convolution.Int. J. Math. Comput. 4 (S09) (2009), 124–128. MR 2596425
Reference: [2] Cîrnu, M.: Newton’s identities and Laplace transform.Amer. Math. Monthly 117 (1) (2010), 67–71. MR 2599468, 10.4169/000298910X474998
Reference: [3] Cîrnu, M.: Initial–value problems for first–order differential recurrence equations with auto–convolution.Electron. J. Differential Equations 2 (2011), 1–13. Zbl 1258.34023, MR 2764319
Reference: [4] Flaisher, N. M.: A certain differential recurrence equation.Arch. Math. (Brno) 4 (4) (1968), 237–239, (Russian). MR 0262631
Reference: [5] Widder, D. V.: The Laplace transform.Princeton University Press, 1946. MR 0005923
Reference: [6] Wintner, A.: On analytic convolutions of Bernoulli distributions.Amer. J. Math. 56 (1934), 659–663. Zbl 0010.05905, MR 1507049, 10.2307/2370961
.

Files

Files Size Format View
ArchMathRetro_047-2011-4_1.pdf 411.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo