Previous |  Up |  Next

Article

Title: On local isometric immersions into complex and quaternionic projective spaces (English)
Author: Rivertz, Hans Jakob
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 4
Year: 2011
Pages: 251-256
Summary lang: English
.
Category: math
.
Summary: We will prove that if an open subset of $\mathbb{C}{}P^{n}$ is isometrically immersed into $\mathbb{C}{}P^{m}$, with $m<(4/3)n-2/3$, then the image is totally geodesic. We will also prove that if an open subset of $\mathbb{H}{}P^{n}$ isometrically immersed into $\mathbb{H}{}P^{m}$, with $m<(4/3)n-5/6$, then the image is totally geodesic. (English)
Keyword: submanifolds
Keyword: homogeneous spaces
Keyword: symmetric spaces
MSC: 53C40
idZBL: Zbl 1249.53079
idMR: MR2876947
.
Date available: 2011-12-16T15:12:20Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141773
.
Reference: [1] Agaoka, Y.: A note on local isometric imbeddings of complex projective spaces.J. Math. Kyoto Univ. 27 (3) (1987), 501–505. Zbl 0633.53080, MR 0910231
Reference: [2] Agaoka, Y., Kaneda, E.: On local isometric immersions of Riemannian symmetric spaces.Tôhoku Math. J. 36 (1984), 107–140. Zbl 0533.53052, MR 0733623, 10.2748/tmj/1178228907
Reference: [3] Bourguignon, J., Karcher, H.: Curvature operators pinching estimates and geometric examples.Ann. Sci. École Norm. Sup. (4) 11 (1978), 71–92. Zbl 0386.53031, MR 0493867
Reference: [4] Dajczer, M., Rodriguez, L.: On isometric immersions into complex space forms.VIII School on Differential Geometry (Portuguese) (Campinas, 1992), vol. 4, Mat. Contemp., 1993, pp. 95–98. Zbl 0852.53044, MR 1302494
Reference: [5] Dajczer, M., Rodriguez, L.: On isometric immersions into complex space forms.Math. Ann. 299 (1994), 223–230. Zbl 0806.53019, MR 1275765, 10.1007/BF01459781
Reference: [6] Gray, A.: A note on manifolds whose holonomy group is a subgroup of $Sp(n)\cdot Sp(1)$.Michigan Math. J. 16 (1969), 125–128. MR 0244913
Reference: [7] Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces.Academic Press, New York, San Francisco and London, 1978, Ch. 4. Zbl 0451.53038, MR 0514561
Reference: [8] Küpelî, D. N.: Notes on totally geodesic Hermitian subspaces of indefinite Kähler manifolds.Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 43 (1) (1995), 1–7. MR 1338255
Reference: [9] Rivertz, H. J.: On isometric and conformal immersions into Riemannian spaces.Ph.D. thesis, Department of Mathematics, University of Oslo, 1999.
Reference: [10] Tomter, P.: Isometric immersions into complex projective space.Lie groups, geometric structures and differential equations—one hundred years after Sophus Lie, vol. 37, Adv. Stud. Pure Math., 2002, pp. 367–396. Zbl 1043.53047, MR 1980909
Reference: [11] Wolf, J. A.: Correction to: The geometry and structure of isotropy irreducible homogeneous spaces.Acta Math. 152 (1984), 141–152. Zbl 0539.53037, MR 0736216, 10.1007/BF02392195
.

Files

Files Size Format View
ArchMathRetro_047-2011-4_2.pdf 434.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo