Previous |  Up |  Next

Article

Title: Invariant variational problems on principal bundles and conservation laws (English)
Author: Brajerčík, Ján
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 5
Year: 2011
Pages: 357-366
Summary lang: English
.
Category: math
.
Summary: In this work, we consider variational problems defined by $G$-invariant Lagrangians on the $r$-jet prolongation of a principal bundle $P$, where $G$ is the structure group of $P$. These problems can be also considered as defined on the associated bundle of the $r$-th order connections. The correspondence between the Euler-Lagrange equations for these variational problems and conservation laws is discussed. (English)
Keyword: principal bundle
Keyword: variational principle
Keyword: invariant Lagrangian
Keyword: Euler-Lagrange equations
Keyword: Noether’s current
Keyword: conservation law
MSC: 49Q99
MSC: 49S05
MSC: 58A10
MSC: 58A20
idZBL: Zbl 1265.49049
idMR: MR2876939
.
Date available: 2011-12-16T15:24:09Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141783
.
Reference: [1] Brajerčík, J.: $Gl_{n} (\mathbb{R})$–invariant variational principles on frame bundles.Balkan J. Geom. Appl. 13 (1) (2008), 11–19. MR 2395370
Reference: [2] Brajerčík, J.: Order reduction of the Euler–Lagrange equations of higher order invariant variational problems on frame bundles.Czechoslovak Math. J. (2011), to appear. Zbl 1249.53029, MR 2886257, 10.1007/s10587-011-0048-4
Reference: [3] Brajerčík, J., Krupka, D.: Variational principles for locally variational forms.J. Math. Phys. 46 (2005), 1–15, 052903. Zbl 1110.58011, MR 2143003, 10.1063/1.1901323
Reference: [4] Castrillón López, M., García, P. L., Ratiu, T. S.: Euler–Poincaré reduction on principal bundles.Lett. Math. Phys. 58 (2001), 167–180. Zbl 1020.58018, MR 1876252, 10.1023/A:1013303320765
Reference: [5] Castrillón López, M., García, P. L., Rodrigo, C.: Euler–Poincaré reduction in principal fibre bundles and the problem of Lagrange.Differential Geom. Appl. 25 (6) (2007), 585–593. MR 2373936, 10.1016/j.difgeo.2007.06.007
Reference: [6] Castrillón López, M., Ratiu, T. S., Shkoller, S.: Reduction in principal fiber bundles: Covariant Euler–Poincaré equations.Proc. Amer. Math. Soc. 128 (7) (2000), 2155–2164. MR 1662269, 10.1090/S0002-9939-99-05304-6
Reference: [7] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Vol. 1, 2.Interscience Publishers, Wiley, New York, 1963. MR 0152974
Reference: [8] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry.Springer Verlag, Berlin, 1993. MR 1202431
Reference: [9] Krupka, D.: Some geometric aspects of variational problems in fibered manifold.Folia Fac. Sci. Natur. Univ. Purk. Brun. Phys. 14 (1973).
Reference: [10] Krupka, D.: A geometric theory of ordinary first order variational problems in fibered manifolds, II. Invariance.J. Math. Anal. Appl. 49 (1975), 469–476. Zbl 0312.58003, MR 0362398, 10.1016/0022-247X(75)90190-0
Reference: [11] Krupka, D.: Lepagean forms in higher order variational theory.Proc. IUTAM-ISIMM Symposium, Modern Developements in Analytical Mechanics I: Geometrical Dynamics (Benenti, S., Francaviglia, M., Lichnerowicz, A., eds.), Accad. delle Scienze di Torino, Torino, 1983, pp. 197–238. Zbl 0572.58003, MR 0773488
Reference: [12] Krupka, D., Janyška, J.: Lectures on Differential Invariants.Folia Fac. Sci. Natur. Univ. Purk. Brun. Math. 1 (1990). MR 1108622
Reference: [13] Trautman, A.: Invariance of Lagrangian systems, General RelativityPapers in honour of J. L. Synge.pp. 85–99, Clarendon Press, Oxford, 1972. MR 0503424
.

Files

Files Size Format View
ArchMathRetro_047-2011-5_3.pdf 475.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo