Previous |  Up |  Next

Article

Title: Noether’s theorem for a fixed region (English)
Author: Bering, Klaus
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 5
Year: 2011
Pages: 337-356
Summary lang: English
.
Category: math
.
Summary: We give an elementary proof of Noether's first Theorem while stressing the magical fact that the global quasi-symmetry only needs to hold for one fixed integration region. We provide sufficient conditions for gauging a global quasi-symmetry. (English)
Keyword: Noether’s first Theorem
MSC: 70H33
MSC: 70S10
idZBL: Zbl 1265.70033
idMR: MR2876938
.
Date available: 2011-12-16T15:23:09Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141782
.
Reference: [1] Arnold, V. I.: Mathematical Methods of Classical Mechanics.Springer–Verlag, 1989. MR 0997295
Reference: [2] Barnich, G., Brandt, F., Henneaux, M.: Local BRST cohomology in gauge theories.Phys. Rep. 338 (2000), 439–569, arXiv:hep-th/0002245. Zbl 1097.81571, MR 1792979, 10.1016/S0370-1573(00)00049-1
Reference: [3] Bering, K.: Putting an edge to the Poisson bracket.J. Math. Phys. 41 (2000), 7468–7500. Zbl 0984.70020, MR 1788585, 10.1063/1.1286144
Reference: [4] Bogoliubov, N. N., Shirkov, D. V.: Introduction to the Theory of Quantized Fields.3rd ed., John Wiley and Sons Inc., 1980. MR 0579493
Reference: [5] de Wit, B., Smith, J.: Field Theory in Particle Physics.vol. 1, North–Holland, 1986.
Reference: [6] Goldstein, H.: Classical Mechanics.Addison–Wesley Publishing, 1980, Second edition. Zbl 0491.70001, MR 0575343
Reference: [7] Hill, E. L.: Hamilton’s principle and the conservation theorems of mathematical physics.Rev. Modern Phys. 23 (1951), 253–260. Zbl 0044.38509, MR 0044959, 10.1103/RevModPhys.23.253
Reference: [8] Ibragimov, N. Kh.: Invariant variational problems and the conservation laws (remarks on E. Noether’s theorem).Theoret. Mat.h Phys. 1 (1969), 267–274. MR 0464998, 10.1007/BF01035741
Reference: [9] José, J. V., Saletan, E. J.: Classical Dynamics: A Contemporary Approach.Cambridge Univ. Press, 1998. MR 1640663
Reference: [10] Komorowski, J.: A modern version of the E. Noether’s theorems in the calculus of variations, Part I.Studia Math. 29 (1968), 261–273. MR 0225205
Reference: [11] Noether, E.: Invariante Variationsprobleme.Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen, Math.–Phys. Klasse (1918), 235—257, English translation: arXiv:physics/0503066.
Reference: [12] Olver, P. J.: Applications of Lie Groups to Differential Equations.2nd ed., Springer–Verlag, 1993. Zbl 0785.58003, MR 1240056
Reference: [13] Polchinski, J.: String Theory.vol. 1, Cambridge Univ. Press, 1998. Zbl 1006.81522
Reference: [14] Ramond, P.: Field Theory: A Modern Primer.Addison–Wesley, 1989. MR 1083767
Reference: [15] Sarlet, W., Cantrijn, F.: Generalizations of Noether’s theorem in classical mechanics.SIAM Rev. 23 (1981), 467–494. Zbl 0474.70014, MR 0636081
Reference: [16] Trautman, A.: Noether equations and conservation laws.Commun. Math. Phys. 6 (1967), 248–261. Zbl 0172.27803, MR 0220470
Reference: [17] : http://en.wikipedia.org/wiki/Noether's_theorem.tp://en.wikipedia.org/wiki/noether's_theorem.
.

Files

Files Size Format View
ArchMathRetro_047-2011-5_2.pdf 514.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo