Previous |  Up |  Next

Article

Title: Introduction to Graded Geometry, Batalin-Vilkovisky Formalism and their Applications (English)
Author: Qiu, Jian
Author: Zabzine, Maxim
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 5
Year: 2011
Pages: 415-471
Summary lang: English
.
Category: math
.
Summary: These notes are intended to provide a self-contained introduction to the basic ideas of finite dimensional Batalin-Vilkovisky (BV) formalism and its applications. A brief exposition of super- and graded geometries is also given. The BV–formalism is introduced through an odd Fourier transform and the algebraic aspects of integration theory are stressed. As a main application we consider the perturbation theory for certain finite dimensional integrals within BV-formalism. As an illustration we present a proof of the isomorphism between the graph complex and the Chevalley-Eilenberg complex of formal Hamiltonian vectors fields. We briefly discuss how these ideas can be extended to the infinite dimensional setting. These notes should be accessible to both physicists and mathematicians. (English)
Keyword: Batalin-Vilkovisky formalism
Keyword: graded symplectic geometry
Keyword: graph homology
Keyword: perturbation theory
MSC: 16E45
MSC: 58A50
MSC: 97K30
idZBL: Zbl 1265.58003
idMR: MR2876945
.
Date available: 2011-12-16T15:30:57Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141789
.
Reference: [1] Axelrod, S., Singer, I. M.: Chern–Simons perturbation theory II.J. Differential Geom. 39 (1994), 173–213. Zbl 0889.53053, MR 1258919
Reference: [2] Bar–Natan, D.: On the Vassiliev Knot Invariants.Topology 34 (1995), 423–472. MR 1318886, 10.1016/0040-9383(95)93237-2
Reference: [3] Batalin, I. A., Vilkovisky, G. A.: Gauge algebra and quantization.Phys. Lett. B 102 (1981), 27–31. MR 0616572, 10.1016/0370-2693(81)90205-7
Reference: [4] Batalin, I. A., Vilkovisky, G. A.: Quantization of gauge theories with linearly dependent generators.Phys. Rev. D 28 (1983), 2567–2582, [Erratum-ibid. D 30 (1984) 508]. MR 0726170, 10.1103/PhysRevD.28.2567
Reference: [5] Carmeli, C., Caston, L., Fioresi, R.: Mathematical foundation of supersymmetry.EMS Ser. Lect. Math., 2011, with an appendix I. Dimitrov. MR 2840967
Reference: [6] Cattaneo, A. S., Felder, G.: A path integral approach to the Kontsevich quantization formula.Comm. Math. Phys. 212 (2000), 591–611, [arXiv:math/9902090]. Zbl 1038.53088, MR 1779159, 10.1007/s002200000229
Reference: [7] Cattaneo, A. S., Fiorenza, D., Longoni, R.: Graded Poisson Algebras.Encyclopedia of Mathematical Physics (Françoise, J.-P., Naber, G. L., Tsou, S. T., eds.), vol. 2, Oxford, Elsevier, 2006, pp. 560–567.
Reference: [8] Cattaneo, A. S., Mnëv, P.: Remarks on Chern–Simons invariants.Comm. Math. Phys. 293 (2010), 803–836, [arXiv:0811.2045 [math.QA]]. Zbl 1246.58018, MR 2566163, 10.1007/s00220-009-0959-1
Reference: [9] Conant, J., Vogtmann, K.: On a theorem of Kontsevich.Algebr. Geom. Topol. 3 (2003), 1167–1224, [arXiv:math/0208169]. Zbl 1063.18007, MR 2026331, 10.2140/agt.2003.3.1167
Reference: [10] Deligne, P., Morgan, J. W.: Notes on supersymmetry (following Joseph Bernstein). Quantum fields and strings: a course for mathematicians.Amer. Math. Soc., Providence, RI 1, 2 (1999), 41–97, Vol. 1, 2 (Princeton, NJ, 1996/1997). MR 1701597
Reference: [11] Getzler, E.: Batalin–Vilkovisky algebras and two–dimensional topological field theories.Comm. Math. Phys. 159 (1994), 265–285. Zbl 0807.17026, MR 1256989, 10.1007/BF02102639
Reference: [12] Hamilton, A.: A super–analogue of Kontsevich’s theorem on graph homology.[arXiv:math/0510390v1]. Zbl 1173.17020
Reference: [13] Hamilton, A., Lazarev, A.: Graph cohomology classes in the Batalin–Vilkovisky formalism.J. Geom. Phys. 59 (2009), 555–575. Zbl 1204.53070, MR 2518988, 10.1016/j.geomphys.2009.01.007
Reference: [14] Hochschild, G., Serre, J–P.: Cohomology of Lie algebras.Ann. of Math. (2) 57 (3) (1953), 591–603. Zbl 0053.01402, MR 0054581, 10.2307/1969740
Reference: [15] Kontsevich, M.: Formal (non)–commutative symplectic geometry.The Gelfand Mathematical Seminars, 1990 – 1992, Birkhäuser, 1993, pp. 173–187. Zbl 0821.58018, MR 1247289
Reference: [16] Kontsevich, M.: Feynman diagrams and low–dimensional topology.First European Congress of Mathematics, 1992, Paris, Progress in Mathematics 120, vol. II, Birkhäuser, 1994, pp. 97–121. Zbl 0872.57001, MR 1341841
Reference: [17] Polyak, M.: Feynman diagrams for pedestrians and mathematicians.Graphs and patterns in mathematics and theoretical physics, vol. 73, Proc. Sympos. Pure Math., 2005, [arXiv:math/0406251], pp. 15–42. Zbl 1080.81047, MR 2131010
Reference: [18] Qiu, J., Zabzine, M.: Knot invariants and new weight systems from general 3D TFTs.arXiv:1006.1240 [hep-th].
Reference: [19] Qiu, J., Zabzine, M.: Odd Chern–Simons theory, Lie algebra cohomology and characteristic classes.Comm. Math. Phys. 300 (2010), 789–833, arXiv:0912.1243 [hep-th]. Zbl 1214.81262, MR 2736963, 10.1007/s00220-010-1102-z
Reference: [20] Roytenberg, D.: On the structure of graded symplectic supermanifolds and Courant algebroids.Quantization, Poisson brackets and beyond (Manchester, 2001), Contemp. Math., 2002, arXiv:math/0203110, pp. 169–185. Zbl 1036.53057, MR 1958835
Reference: [21] Sawon, J.: Rozansky–Witten invariants of hyperkähler manifolds.Ph.D. thesis, Oxford, 1999. Zbl 0946.32014, MR 1708931
Reference: [22] Sawon, J.: Perturbative expansion of Chern–Simons theory.Geom. Topol. Monogr. 8 (2006), 145–166, arXiv:math/0504495. Zbl 1108.81034, MR 2402824, 10.2140/gtm.2006.8.145
Reference: [23] Schwarz, A. S.: Geometry of Batalin–Vilkovisky quantization.Comm. Math. Phys. 155 (1993), 249–260, arXiv:hep-th/9205088. Zbl 0786.58017, MR 1230027, 10.1007/BF02097392
Reference: [24] Schwarz, A. S.: Quantum observables, Lie algebra homology and TQFT.Lett. Math. Phys. 49 (2) (1999), 115–122, arXiv:hep-th/9904168. Zbl 1029.81064, MR 1728307, 10.1023/A:1007684424728
Reference: [25] Varadarajan, V. S.: Supersymmetry for mathematicians: an introduction.Courant Lecture Notes in Mathematics, 11 ed., AMS, New York, 2004. Zbl 1142.58009, MR 2069561
.

Files

Files Size Format View
ArchMathRetro_047-2011-5_9.pdf 1.266Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo