Previous |  Up |  Next

Article

Title: Maximal solvable extensions of filiform algebras (English)
Author: Šnobl, Libor
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 5
Year: 2011
Pages: 405-414
Summary lang: English
.
Category: math
.
Summary: It is already known that any filiform Lie algebra which possesses a codimension 2 solvable extension is naturally graded. Here we present an alternative derivation of this result. (English)
Keyword: solvable and nilpotent Lie algebras
Keyword: filiform algebras
MSC: 17B05
MSC: 17B30
MSC: 17B81
idZBL: Zbl 1265.17017
idMR: MR2876944
.
Date available: 2011-12-16T15:29:16Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141788
.
Reference: [1] Ancochea, J. M., Campoamor–Stursberg, R., Vergnolle, L. Garcia: Solvable Lie algebras with naturally graded nilradicals and their invariants.J. Phys. A, Math. Theor. 39 (2006), 1339–1355. MR 2202805, 10.1088/0305-4470/39/6/008
Reference: [2] Campoamor–Stursberg, R.: Solvable Lie algebras with an $\mathbb{N}$–graded nilradical of maximal nilpotency degree and their invariants.J. Phys. A, Math. Theor. 43 (2010), Article ID 145202. MR 2606433, 10.1088/1751-8113/43/14/145202
Reference: [3] Echarte, F. J., Gómez, J. R., Núñez, J.: Les algèbres de Lie filiformes complexes dérivées d’autres algèbres de Lie.[Complex filiform Lie algebras derived from other Lie algebras], Lois d'algèbres et variétés algébraiques (Colmar, 1991), Travaux en Cours 50, Hermann, Paris, 1996, pp. 45–55. MR 1600982
Reference: [4] Goze, M., Hakimjanov, Yu.: Sur les algèbres de Lie nilpotentes admettant un tore de derivations.Manuscripta Math. 84 (1994), 115–224. Zbl 0823.17009, MR 1285951, 10.1007/BF02567448
Reference: [5] Goze, M., Khakimdjanov, Yu.: Nilpotent Lie algebras.Kluwer Academic Publishers Group, Dordrecht, 1996. Zbl 0845.17012, MR 1383588
Reference: [6] Goze, M., Khakimdjanov, Yu.: Handbook of algebra.vol. 2, ch. Nilpotent and solvable Lie algebras, pp. 615–663, North-Holland, Amsterdam, 2000. MR 1759608
Reference: [7] Šnobl, L.: On the structure of maximal solvable extensions and of Levi extensions of nilpotent Lie algebras.J. Phys. A, Math. Theor. 43 (2010), 17, Article ID 505202. Zbl 1231.17004, MR 2740380, 10.1088/1751-8113/43/50/505202
Reference: [8] Šnobl, L., Winternitz, P.: A class of solvable Lie algebras and their Casimir invariants.J. Phys. A, Math. Theor. 38 (2005), 2687–2700. Zbl 1063.22023, MR 2132082, 10.1088/0305-4470/38/12/011
Reference: [9] Vergne, M.: Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes.C. R. Math. Acad. Sci. Paris Sèr. A–B 267 (1968), A867–A870. Zbl 0244.17010, MR 0245632
.

Files

Files Size Format View
ArchMathRetro_047-2011-5_8.pdf 452.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo