Previous |  Up |  Next

Article

Title: Compact embeddings of Besov spaces involving only slowly varying smoothness (English)
Author: Caetano, António
Author: Gogatishvili, Amiran
Author: Opic, Bohumír
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 4
Year: 2011
Pages: 923-940
Summary lang: English
.
Category: math
.
Summary: We characterize compact embeddings of Besov spaces $B^{0,b}_{p,r}(\mathbb {R}^n)$ involving the zero classical smoothness and a slowly varying smoothness $b$ into Lorentz-Karamata spaces $L_{p, q; \bar {b}}(\Omega )$, where $\Omega $ is a bounded domain in $\mathbb {R}^n$ and $\bar {b}$ is another slowly varying function. (English)
Keyword: Besov spaces with generalized smoothness
Keyword: Lorentz-Karamata spaces
Keyword: compact embeddings
MSC: 46E30
MSC: 46E35
idZBL: Zbl 1249.46026
idMR: MR2886248
DOI: 10.1007/s10587-011-0060-8
.
Date available: 2011-12-16T15:38:55Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141798
.
Reference: [1] Bennett, C., Sharpley, R.: Interpolation of Operators.Academic Press, Boston (1988). Zbl 0647.46057, MR 0928802
Reference: [2] Caetano, A. M., Farkas, W.: Local growth envelopes of Besov spaces of generalized smoothness.Z. Anal. Anwendungen 25 (2006), 265-298. Zbl 1119.46032, MR 2251954
Reference: [3] Caetano, A. M., Gogatishvili, A., Opic, B.: Sharp embeddings of Besov spaces involving only logarithmic smoothness.J. Approx. Theory 152 (2008), 188-214. Zbl 1161.46017, MR 2422148, 10.1016/j.jat.2007.12.003
Reference: [4] Caetano, A. M., Gogatishvili, A., Opic, B.: Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness.J. Approx. Theory 163 (2011), 1373-1399. MR 2832731, 10.1016/j.jat.2011.03.005
Reference: [5] Caetano, A. M., Haroske, D. D.: Continuity envelopes of spaces of generalised smoothness: a limiting case; embeddings and approximation numbers.J. Function Spaces Appl. 3 (2005), 33-71. Zbl 1079.46019, MR 2110047, 10.1155/2005/165785
Reference: [6] Caetano, A. M., Moura, S. D.: Local growth envelopes of spaces of generalized smoothness: the sub-critical case.Math. Nachr. 273 (2004), 43-57. MR 2084956, 10.1002/mana.200310195
Reference: [7] Caetano, A. M., Moura, S. D.: Local growth envelopes of spaces of generalized smoothness: the critical case.Math. Ineq. & Appl. 7 (2004), 573-606. Zbl 1076.46025, MR 2097514
Reference: [8] Carro, M. J., Raposo, J. A., Soria, J.: Recent developments in the theory of Lorentz spaces and weighted inequalities.Mem. Amer. Math. Soc. 187 (2007). Zbl 1126.42005, MR 2308059
Reference: [9] Carro, M. J., Soria, J.: Weighted Lorentz spaces and the Hardy operator.J. Funct. Anal. 112 (1993), 480-494. Zbl 0784.46022, MR 1213148, 10.1006/jfan.1993.1042
Reference: [10] Dunford, N., Schwartz, J. T.: Linear Operators, part I.Interscience, New York (1957).
Reference: [11] Edmunds, D. E., Evans, W. D.: Hardy Operators, Functions Spaces and Embeddings.Springer, Berlin, Heidelberg (2004). MR 2091115
Reference: [12] Edmunds, D. E., Gurka, P., Opic, B.: Compact and continuous embeddings of logarithmic Bessel potential spaces.Studia Math. 168 (2005), 229-250. Zbl 1083.46017, MR 2146125, 10.4064/sm168-3-4
Reference: [13] Edmunds, D. E., Kerman, R., Pick, L.: Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms.J. Funct. Anal. 170 (2000), 307-355. Zbl 0955.46019, MR 1740655, 10.1006/jfan.1999.3508
Reference: [14] Farkas, W., Leopold, H.-G.: Characterisations of function spaces of generalised smoothness.Ann. Mat. Pura Appl. 185 (2006), 1-62. Zbl 1116.46024, MR 2179581, 10.1007/s10231-004-0110-z
Reference: [15] Gol'dman, M. L.: Embeddings of Nikol'skij-Besov spaces into weighted Lorent spaces.Trudy Mat. Inst. Steklova 180 (1987), 93-95 Russian.
Reference: [16] Gol'dman, M. L.: Rearrangement invariant envelopes of generalized Besov, Sobolev, and Calderon spaces.Burenkov, V. I. (ed.) et al., The interaction of analysis and geometry. International school-conference on analysis and geometry, Novosibirsk, Russia, August 23-September 3, 2004. Providence, RI: American Mathematical Society (AMS). Contemporary Mathematics 424 (2007), 53-81. MR 2316331
Reference: [17] Gol'dman, M. L., Kerman, R.: On optimal embedding of Calderón spaces and generalized Besov spaces.Tr. Mat. Inst. Steklova 243 (2003), 161-193 Russian English translation: Proc. Steklov Inst. Math. 243 (2003), 154-184. Zbl 1090.46022, MR 2049469
Reference: [18] Gurka, P., Opic, B.: Sharp embeddings of Besov spaces with logarithmic smoothness.Rev. Mat. Complutense 18 (2005), 81-110. Zbl 1083.46018, MR 2135533
Reference: [19] Gurka, P., Opic, B.: Sharp embeddings of Besov-type spaces.J. Comput. Appl. Math. 208 (2007), 235-269. Zbl 1132.46022, MR 2347748, 10.1016/j.cam.2006.10.036
Reference: [20] Haroske, D. D., Moura, S. D.: Continuity envelopes of spaces of generalized smoothness, entropy and approximation numbers.J. Approximation Theory 128 (2004), 151-174. MR 2068695, 10.1016/j.jat.2004.04.008
Reference: [21] Kalyabin, G. A., Lizorkin, P. I.: Spaces of functions of generalized smoothness.Math. Nachr. 133 (1987), 7-32. Zbl 0636.46033, MR 0912417, 10.1002/mana.19871330102
Reference: [22] Netrusov, Yu.: Imbedding theorems of Besov spaces in Banach lattices.J. Soviet. Math. 47 (1989), 2871-2881 Translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklova (LOMI) 159 (1987), 69-82. MR 0885077, 10.1007/BF01305216
Reference: [23] Triebel, H.: Theory of Function Spaces II.Birkhäuser, Basel (1992). Zbl 0763.46025, MR 1163193
Reference: [24] Triebel, H.: Theory of Function Spaces III.Birkhäuser, Basel (2006). Zbl 1104.46001, MR 2250142
.

Files

Files Size Format View
CzechMathJ_61-2011-4_7.pdf 313.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo