Previous |  Up |  Next

Article

Title: A study of Galerkin method for the heat convection equations (English)
Author: Vinogradova, Polina
Author: Zarubin, Anatoli
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 1
Year: 2012
Pages: 71-91
Summary lang: English
.
Category: math
.
Summary: The paper investigates the Galerkin method for an initial boundary value problem for heat convection equations. New error estimates for the approximate solutions and their derivatives in strong norm are obtained. (English)
Keyword: approximate solution
Keyword: error estimate
Keyword: Galerkin method
Keyword: heat convection equation
Keyword: orthogonal projection
Keyword: viscous fluid
MSC: 35K90
MSC: 35Q35
MSC: 65J10
MSC: 65M15
MSC: 65M60
idZBL: Zbl 1249.65119
idMR: MR2891306
DOI: 10.1007/s10492-012-0005-z
.
Date available: 2012-01-09T19:26:30Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141819
.
Reference: [1] Agmon, S.: On the eigenfunctions and on the eigenvalue of general elliptic boundary value problems.Commun. Pure Appl. Math. 15 (1962), 119-147. MR 0147774, 10.1002/cpa.3160150203
Reference: [2] Ambethkar, V.: Numerical solutions of heat and mass transfer effects of an unsteady MHD free convective flow past an infinite vertical plate with constant suction.J. Naval Arch. Marine Eng. 5 (2008), 28-36.
Reference: [3] Babskii, V. G., Kopachevskii, N. D., Myshkis, A. D., Slobozhanin, L. A., Tyuptsov, A. D.: Fluid Mechanics of Weightlessness.Nauka Moscow (1976), Russian.
Reference: [4] Beckenbach, E., Bellman, R.: Inequalities.Springer Berlin (1965). Zbl 0186.09605, MR 0192009
Reference: [5] Curry, J. H., Herring, J. R., Loncaric, J., Orszag, S. A.: Order and disorder in two- and three-dimensional Bénard convection.J. Fluid Mech. 147 (1984), 1-38. Zbl 0547.76093, 10.1017/S0022112084001968
Reference: [6] Daly, B. J.: A numerical study of turbulence transitions in convective flow.J. Fluid Mech. 64 (1974), 129-165. Zbl 0282.76050, 10.1017/S0022112074002047
Reference: [7] Gershuni, G. Z., Zhuhovitsky, E. M.: Convective Stability of Incompressible Fluid.Nauka Moscow (1972), Russian.
Reference: [8] Glushko, V. P., Krejn, S. G.: Inequalities for the norms of derivative in spaces $L_p$ with weight.Sibirsk. Mat. Zh. 1 (1960), 343-382 Russian. MR 0133681
Reference: [9] Krejn, S. G.: Linear Differential Equations in Banach Spaces. Trans. Math. Monographs, Vol. 29.AMS Providence (1972).
Reference: [10] Ladyzhenskaya, O. A.: The Mathematical Theory of Viscous Incompressible Flow.Gordon and Breach New York (1969). Zbl 0184.52603, MR 0254401
Reference: [11] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N.: Linear and Quasilinear Equations of Parabolic Type.Nauka Moscow (1967), English transl.: Trans. Math. Monographs, Vol. 23 AMS Rhode Island (1968). Zbl 0164.12302
Reference: [12] Shinbrot, M., Kotorynski, W. P.: The initial value problem for a viscous heat-conducting equations.J. Math. Anal. Appl. 45 (1974), 1-22. MR 0361474, 10.1016/0022-247X(74)90115-2
Reference: [13] Solonnikov, V. A.: On estimates of the solutions of elliptic and parabolic systems in $L_p$.Tr. MIAN SSSR 102 (1967), 137-160 Russian. MR 0228809
Reference: [14] Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. Rev. ed.North-Holland Publishing Company Amsterdam (1979). Zbl 0426.35003
Reference: [15] Vinogradova, P., Zarubin, A.: Projection method for Cauchy problem for operator-differential equation.Numer. Funct. Anal. Optim. 30 (2009), 148-167. MR 2492080, 10.1080/01630560902735132
Reference: [16] Werne, J., DeLuca, E. E., Rosner, R., Cattaneo, F.: Numerical simulation of soft and hard turbulence: preliminary results for two-dimensional convection.Phys. Rev. Lett. 64 (1990), 2370-2373. 10.1103/PhysRevLett.64.2370
.

Files

Files Size Format View
AplMat_57-2012-1_5.pdf 294.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo