Previous |  Up |  Next

Article

Title: Existence of weak solutions to doubly degenerate diffusion equations (English)
Author: Matas, Aleš
Author: Merker, Jochen
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 1
Year: 2012
Pages: 43-69
Summary lang: English
.
Category: math
.
Summary: We prove existence of weak solutions to doubly degenerate diffusion equations \begin {equation*} \dot {u} = \Delta _p u^{m-1} + f \quad (m,p \ge 2) \end {equation*} by Faedo-Galerkin approximation for general domains and general nonlinearities. More precisely, we discuss the equation in an abstract setting, which allows to choose function spaces corresponding to bounded or unbounded domains $\Omega \subset \mathbb R^n$ with Dirichlet or Neumann boundary conditions. The function $f$ can be an inhomogeneity or a nonlinearity involving terms of the form $f(u)$ or $\div (F(u))$. In the appendix, an introduction to weak differentiability of functions with values in a Banach space appropriate for doubly nonlinear evolution equations is given. (English)
Keyword: $p$-Laplacian
Keyword: doubly nonlinear evolution equation
Keyword: weak solution
MSC: 35A01
MSC: 35D30
MSC: 35K20
MSC: 35K59
MSC: 35K65
MSC: 35K92
MSC: 37L65
idZBL: Zbl 1249.35194
idMR: MR2891305
DOI: 10.1007/s10492-012-0004-0
.
Date available: 2012-01-09T19:25:07Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141818
.
Reference: [1] Adams, R. A.: Sobolev Spaces.Academic Press New Yorek-San Francisco-London (1975). Zbl 0314.46030, MR 0450957
Reference: [2] Alt, H. W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations.Math. Z. 183 (1983), 311-341. Zbl 0497.35049, MR 0706391, 10.1007/BF01176474
Reference: [3] Benilan, Ph.: Equations d'évolution dans un espace de Banach quelconque et applications.PhD. Thèse Université de Paris XI Orsay (1972).
Reference: [4] DiBenedetto, E.: Degenerate Parabolic Equations.Springer New York (1993). Zbl 0794.35090, MR 1230384
Reference: [5] Bonforte, M., Grillo, G.: Super and ultracontractive bounds for doubly nonlinear evolution equations.Rev. Math. Iberoam. 22 (2006), 111-129. Zbl 1103.35021, MR 2268115
Reference: [6] Caisheng, Chen: Global existence and $L^\infty$ estimates of solution for doubly nonlinear parabolic equation.J. Math. Anal. Appl. 244 (2000), 133-146. MR 1746793, 10.1006/jmaa.1999.6695
Reference: [7] Cipriano, F., Grillo, G.: Uniform bounds for solutions to quasilinear parabolic equations.J. Differ. Equations 177 (2001), 209-234. Zbl 1036.35043, MR 1867617, 10.1006/jdeq.2000.3985
Reference: [8] Diaz, J. I., Padial, J. F.: Uniqueness and existence of solutions in the $BV_t(Q)$ space to a doubly nonlinear parabolic problem.Publ. Math. Barcelona 40 (1996), 527-560. MR 1425634
Reference: [9] Igbida, N., Urbano, J. M.: Uniqueness for nonlinear degenerate problems.NoDEA, Nonlinear Differ. Equ. Appl. 10 (2003), 287-307. Zbl 1024.35054, MR 1994812, 10.1007/s00030-003-1030-0
Reference: [10] Ivanov, A. V.: Regularity for doubly nonlinear parabolic equations.J. Math. Sci. 83 (1997), 22-37. MR 1328634, 10.1007/BF02398459
Reference: [11] Maitre, E.: On a nonlinear compactness lemma in $L^p(0,T;B)$.IJMMS, Int. J. Math, Math. Sci. 27 (2003), 1725-1730. Zbl 1032.46032, MR 1981027, 10.1155/S0161171203106175
Reference: [12] Merker, J.: Generalizations of logarithmic Sobolev inequalities.Discrete Contin. Dyn. Syst., Ser. S 1 (2008), 329-338. Zbl 1152.35326, MR 2379911
Reference: [13] Simon, J.: Compact sets in the space $L^p(0,T;B)$.Ann. Mat. Pura. Appl., IV. Ser. 146 (1987), 65-96. MR 0916688
Reference: [14] Wu, Z., Zhao, J., Yin, J., Li, H.: Nonlinear Evolution Equations.World Scientific Singapore (2001).
Reference: [15] Zheng, S.: Nonlinear Evolution Equations.CRC-Press/Chapman & Hall Boca Raton (2004). Zbl 1085.47058, MR 2088362
.

Files

Files Size Format View
AplMat_57-2012-1_4.pdf 370.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo