Title:
|
Existence of weak solutions to doubly degenerate diffusion equations (English) |
Author:
|
Matas, Aleš |
Author:
|
Merker, Jochen |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
57 |
Issue:
|
1 |
Year:
|
2012 |
Pages:
|
43-69 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove existence of weak solutions to doubly degenerate diffusion equations \begin {equation*} \dot {u} = \Delta _p u^{m-1} + f \quad (m,p \ge 2) \end {equation*} by Faedo-Galerkin approximation for general domains and general nonlinearities. More precisely, we discuss the equation in an abstract setting, which allows to choose function spaces corresponding to bounded or unbounded domains $\Omega \subset \mathbb R^n$ with Dirichlet or Neumann boundary conditions. The function $f$ can be an inhomogeneity or a nonlinearity involving terms of the form $f(u)$ or $\div (F(u))$. In the appendix, an introduction to weak differentiability of functions with values in a Banach space appropriate for doubly nonlinear evolution equations is given. (English) |
Keyword:
|
$p$-Laplacian |
Keyword:
|
doubly nonlinear evolution equation |
Keyword:
|
weak solution |
MSC:
|
35A01 |
MSC:
|
35D30 |
MSC:
|
35K20 |
MSC:
|
35K59 |
MSC:
|
35K65 |
MSC:
|
35K92 |
MSC:
|
37L65 |
idZBL:
|
Zbl 1249.35194 |
idMR:
|
MR2891305 |
DOI:
|
10.1007/s10492-012-0004-0 |
. |
Date available:
|
2012-01-09T19:25:07Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141818 |
. |
Reference:
|
[1] Adams, R. A.: Sobolev Spaces.Academic Press New Yorek-San Francisco-London (1975). Zbl 0314.46030, MR 0450957 |
Reference:
|
[2] Alt, H. W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations.Math. Z. 183 (1983), 311-341. Zbl 0497.35049, MR 0706391, 10.1007/BF01176474 |
Reference:
|
[3] Benilan, Ph.: Equations d'évolution dans un espace de Banach quelconque et applications.PhD. Thèse Université de Paris XI Orsay (1972). |
Reference:
|
[4] DiBenedetto, E.: Degenerate Parabolic Equations.Springer New York (1993). Zbl 0794.35090, MR 1230384 |
Reference:
|
[5] Bonforte, M., Grillo, G.: Super and ultracontractive bounds for doubly nonlinear evolution equations.Rev. Math. Iberoam. 22 (2006), 111-129. Zbl 1103.35021, MR 2268115 |
Reference:
|
[6] Caisheng, Chen: Global existence and $L^\infty$ estimates of solution for doubly nonlinear parabolic equation.J. Math. Anal. Appl. 244 (2000), 133-146. MR 1746793, 10.1006/jmaa.1999.6695 |
Reference:
|
[7] Cipriano, F., Grillo, G.: Uniform bounds for solutions to quasilinear parabolic equations.J. Differ. Equations 177 (2001), 209-234. Zbl 1036.35043, MR 1867617, 10.1006/jdeq.2000.3985 |
Reference:
|
[8] Diaz, J. I., Padial, J. F.: Uniqueness and existence of solutions in the $BV_t(Q)$ space to a doubly nonlinear parabolic problem.Publ. Math. Barcelona 40 (1996), 527-560. MR 1425634 |
Reference:
|
[9] Igbida, N., Urbano, J. M.: Uniqueness for nonlinear degenerate problems.NoDEA, Nonlinear Differ. Equ. Appl. 10 (2003), 287-307. Zbl 1024.35054, MR 1994812, 10.1007/s00030-003-1030-0 |
Reference:
|
[10] Ivanov, A. V.: Regularity for doubly nonlinear parabolic equations.J. Math. Sci. 83 (1997), 22-37. MR 1328634, 10.1007/BF02398459 |
Reference:
|
[11] Maitre, E.: On a nonlinear compactness lemma in $L^p(0,T;B)$.IJMMS, Int. J. Math, Math. Sci. 27 (2003), 1725-1730. Zbl 1032.46032, MR 1981027, 10.1155/S0161171203106175 |
Reference:
|
[12] Merker, J.: Generalizations of logarithmic Sobolev inequalities.Discrete Contin. Dyn. Syst., Ser. S 1 (2008), 329-338. Zbl 1152.35326, MR 2379911 |
Reference:
|
[13] Simon, J.: Compact sets in the space $L^p(0,T;B)$.Ann. Mat. Pura. Appl., IV. Ser. 146 (1987), 65-96. MR 0916688 |
Reference:
|
[14] Wu, Z., Zhao, J., Yin, J., Li, H.: Nonlinear Evolution Equations.World Scientific Singapore (2001). |
Reference:
|
[15] Zheng, S.: Nonlinear Evolution Equations.CRC-Press/Chapman & Hall Boca Raton (2004). Zbl 1085.47058, MR 2088362 |
. |