Previous |  Up |  Next

Article

Title: Berezin transform for non-scalar holomorphic discrete series (English)
Author: Cahen, Benjamin
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 1
Year: 2012
Pages: 1-17
Summary lang: English
.
Category: math
.
Summary: Let $M=G/K$ be a Hermitian symmetric space of the non-compact type and let $\pi$ be a discrete series representation of $G$ which is holomorphically induced from a unitary irreducible representation $\rho$ of $K$. In the paper [B. Cahen, Berezin quantization for holomorphic discrete series representations: the non-scalar case, Beiträge Algebra Geom., DOI 10.1007/s13366-011-0066-2], we have introduced a notion of complex-valued Berezin symbol for an operator acting on the space of $\pi$. Here we study the corresponding Berezin transform and we show that it can be extended to a large class of symbols. As an application, we construct a Stratonovich-Weyl correspondence associated with $\pi$. (English)
Keyword: Berezin quantization
Keyword: Berezin symbol
Keyword: Stratonovich-Weyl correspondence
Keyword: discrete series representation
Keyword: Hermitian symmetric space of the non-compact type
Keyword: semi-simple non-compact Lie group
Keyword: coherent states
Keyword: reproducing kernel
Keyword: adjoint orbit
MSC: 22E46
MSC: 32M10
MSC: 32M15
MSC: 81S10
idZBL: Zbl 1249.22008
idMR: MR2880907
.
Date available: 2012-02-07T10:20:19Z
Last updated: 2014-04-07
Stable URL: http://hdl.handle.net/10338.dmlcz/141820
.
Reference: [1] Ali S.T., Engliš M.: Quantization methods: a guide for physicists and analysts.Rev. Math. Phys. 17 (2005), no. 4, 391–490. MR 2151954, 10.1142/S0129055X05002376
Reference: [2] Arazy J., Upmeier H.: Weyl calculus for complex and real symmetric domains.Harmonic Analysis on Complex Homogeneous Domains and Lie Groups (Rome, 2001), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13 (2002), no. 3–4, 165–181. Zbl 1150.43302, MR 1984098
Reference: [3] Arazy J., Upmeier H.: Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains.Function Spaces, Interpolation Theory and Related Topics (Lund, 2000), Walter de Gruyter, Berlin, 2002, pp. 151–211. MR 1943284
Reference: [4] Arnal D., Cahen M., Gutt S.: Representations of compact Lie groups and quantization by deformation.Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 4–5, 123–141. MR 1027456
Reference: [5] Berezin F.A.: Quantization.Math. USSR Izv. 8 (1974), no. 5, 1109–1165. Zbl 0976.83531, MR 0395610
Reference: [6] F. A. Berezin: Quantization in complex symmetric domains.Math. USSR Izv. 9 (1975), no. 2, 341–379. 10.1070/IM1975v009n02ABEH001480
Reference: [7] Bröcker T., tom Dieck T.: Representations of compact Lie groups.Graduate Texts in Mathematics, 98, Springer, New York, 1985. MR 0781344, 10.1007/978-3-662-12918-0_4
Reference: [8] Cahen B.: Weyl quantization for semidirect products.Differential Geom. Appl. 25 (2007), 177–190. Zbl 1117.81087, MR 2311733, 10.1016/j.difgeo.2006.08.005
Reference: [9] Cahen B.: Berezin quantization on generalized flag manifolds.Math. Scand. 105 (2009), 66–84. MR 2549798
Reference: [10] Cahen B.: Berezin quantization for discrete series.Beiträge Algebra Geom. 51 (2010), 301–311. MR 2682458
Reference: [11] B. Cahen: Stratonovich-Weyl correspondence for compact semisimple Lie groups.Rend. Circ. Mat. Palermo 59 (2010), 331–354. Zbl 1218.22008, MR 2745515, 10.1007/s12215-010-0026-y
Reference: [12] Cahen B.: Stratonovich-Weyl correspondence for discrete series representations.Arch. Math. (Brno) 47 (2011), 41–58. MR 2813546
Reference: [13] Cahen B.: Berezin quantization for holomorphic discrete series representations: the non-scalar case.Beiträge Algebra Geom., DOI 10.1007/s13366-011-0066-2.
Reference: [14] Cahen M., Gutt S., Rawnsley J.: Quantization on Kähler manifolds I. Geometric interpretation of Berezin quantization.J. Geom. Phys. 7 (1990), 45–62. MR 1094730, 10.1016/0393-0440(90)90019-Y
Reference: [15] Cariñena J.F., Gracia-Bond\`\i a J.M., Vàrilly J.C.: Relativistic quantum kinematics in the Moyal representation.J. Phys. A 23 (1990), 901–933. 10.1088/0305-4470/23/6/015
Reference: [16] Davidson M., \`Olafsson G., Zhang G.: Laplace and Segal-Bargmann transforms on Hermitian symmetric spaces and orthogonal polynomials.J. Funct. Anal. 204 (2003), 157–195. MR 2004748, 10.1016/S0022-1236(03)00101-0
Reference: [17] De Oliveira M.P.: Some formulas for the canonical kernel function.Geom. Dedicata 86 (2001), 227–247. Zbl 0996.32011, MR 1856428, 10.1023/A:1011915708964
Reference: [18] Folland B.: Harmonic Analysis in Phase Space.Princeton University Press, Princeton, 1989. Zbl 0682.43001, MR 0983366
Reference: [19] Figueroa H., Gracia-Bond\` \i a J.M., Vàrilly J.C.: Moyal quantization with compact symmetry groups and noncommutative analysis.J. Math. Phys. 31 (1990), 2664-2671. MR 1075750, 10.1063/1.528967
Reference: [20] Gracia-Bond\`\i a J.M.: Generalized Moyal quantization on homogeneous symplectic spaces.Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, MA, 1990), Contemp. Math., 134, American Mathematical Society, Providence, RI, 1992, pp. 93-114. MR 1187280
Reference: [21] Helgason S.: Differential Geometry, Lie Groups and Symmetric Spaces.Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, Rhode Island, 2001. Zbl 0993.53002, MR 1834454
Reference: [22] Herb R.A., Wolf J.A.: Wave packets for the relative discrete series I. The holomorphic case.J. Funct. Anal. 73 (1987), 1–37. Zbl 0625.22010, MR 0890655, 10.1016/0022-1236(87)90057-7
Reference: [23] Knapp A.W.: Representation Theory of Semi-simple Groups. An Overview Based on Examples.Princeton Math. Series, 36, Princeton University Press, Princeton, NJ, 1986. MR 0855239
Reference: [24] Kirillov A.A.: Lectures on the Orbit Method.Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, Rhode Island, 2004. MR 2069175
Reference: [25] Moore C.C.: Compactifications of symmetric spaces II: The Cartan domains.Amer. J. Math. 86 (1964), no. 2, 358–378. MR 0161943, 10.2307/2373170
Reference: [26] Neeb K.-H.: Holomorphy and Convexity in Lie Theory.de Gruyter Expositions in Mathematics, 28, Walter de Gruyter, Berlin, New York, 2000. Zbl 0936.22001, MR 1740617
Reference: [27] Orsted B., Zhang G.: Weyl quantization and tensor products of Fock and Bergman spaces.Indiana Univ. Math. J. 43 (1994), no. 2, 551–583. MR 1291529, 10.1512/iumj.1994.43.43023
Reference: [28] Stratonovich R.L.: On distributions in representation space.Soviet Physics. JETP 4 (1957), 891–898. Zbl 0082.19302, MR 0088173
Reference: [29] Unterberger A., Upmeier H.: Berezin transform and invariant differential operators.Commun. Math. Phys. 164 (1994), no. 3, 563–597. Zbl 0843.32019, MR 1291245, 10.1007/BF02101491
Reference: [30] Varadarajan V.S.: Lie groups, Lie algebras and their representations.Graduate Texts in Mathematics, 102, Springer, New York, 1984. Zbl 0955.22500, MR 0746308
Reference: [31] Wallach N.R.: The analytic continuation of the discrete series. I.Trans. Amer. Math. Soc. 251 (1979), 1–17. Zbl 0419.22017, MR 0531967
Reference: [32] Wildberger N.J.: On the Fourier transform of a compact semisimple Lie group.J. Austral. Math. Soc. A 56 (1994), 64–116. Zbl 0842.22015, MR 1250994, 10.1017/S1446788700034741
Reference: [33] Zhang G.: Berezin transform on line bundles over bounded symmetric domains.J. Lie Theory 10 (2000), 111–126. Zbl 0946.43007, MR 1748086
Reference: [34] Zhang G.: Berezin transform on real bounded symmetric domains.Trans. Amer. Math. Soc. 353 (2001), 3769–3787. Zbl 0965.22015, MR 1837258, 10.1090/S0002-9947-01-02832-X
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-1_1.pdf 561.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo