Title:
|
Berezin transform for non-scalar holomorphic discrete series (English) |
Author:
|
Cahen, Benjamin |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
53 |
Issue:
|
1 |
Year:
|
2012 |
Pages:
|
1-17 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $M=G/K$ be a Hermitian symmetric space of the non-compact type and let $\pi$ be a discrete series representation of $G$ which is holomorphically induced from a unitary irreducible representation $\rho$ of $K$. In the paper [B. Cahen, Berezin quantization for holomorphic discrete series representations: the non-scalar case, Beiträge Algebra Geom., DOI 10.1007/s13366-011-0066-2], we have introduced a notion of complex-valued Berezin symbol for an operator acting on the space of $\pi$. Here we study the corresponding Berezin transform and we show that it can be extended to a large class of symbols. As an application, we construct a Stratonovich-Weyl correspondence associated with $\pi$. (English) |
Keyword:
|
Berezin quantization |
Keyword:
|
Berezin symbol |
Keyword:
|
Stratonovich-Weyl correspondence |
Keyword:
|
discrete series representation |
Keyword:
|
Hermitian symmetric space of the non-compact type |
Keyword:
|
semi-simple non-compact Lie group |
Keyword:
|
coherent states |
Keyword:
|
reproducing kernel |
Keyword:
|
adjoint orbit |
MSC:
|
22E46 |
MSC:
|
32M10 |
MSC:
|
32M15 |
MSC:
|
81S10 |
idZBL:
|
Zbl 1249.22008 |
idMR:
|
MR2880907 |
. |
Date available:
|
2012-02-07T10:20:19Z |
Last updated:
|
2014-04-07 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141820 |
. |
Reference:
|
[1] Ali S.T., Engliš M.: Quantization methods: a guide for physicists and analysts.Rev. Math. Phys. 17 (2005), no. 4, 391–490. MR 2151954, 10.1142/S0129055X05002376 |
Reference:
|
[2] Arazy J., Upmeier H.: Weyl calculus for complex and real symmetric domains.Harmonic Analysis on Complex Homogeneous Domains and Lie Groups (Rome, 2001), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13 (2002), no. 3–4, 165–181. Zbl 1150.43302, MR 1984098 |
Reference:
|
[3] Arazy J., Upmeier H.: Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains.Function Spaces, Interpolation Theory and Related Topics (Lund, 2000), Walter de Gruyter, Berlin, 2002, pp. 151–211. MR 1943284 |
Reference:
|
[4] Arnal D., Cahen M., Gutt S.: Representations of compact Lie groups and quantization by deformation.Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 4–5, 123–141. MR 1027456 |
Reference:
|
[5] Berezin F.A.: Quantization.Math. USSR Izv. 8 (1974), no. 5, 1109–1165. Zbl 0976.83531, MR 0395610 |
Reference:
|
[6] F. A. Berezin: Quantization in complex symmetric domains.Math. USSR Izv. 9 (1975), no. 2, 341–379. 10.1070/IM1975v009n02ABEH001480 |
Reference:
|
[7] Bröcker T., tom Dieck T.: Representations of compact Lie groups.Graduate Texts in Mathematics, 98, Springer, New York, 1985. MR 0781344, 10.1007/978-3-662-12918-0_4 |
Reference:
|
[8] Cahen B.: Weyl quantization for semidirect products.Differential Geom. Appl. 25 (2007), 177–190. Zbl 1117.81087, MR 2311733, 10.1016/j.difgeo.2006.08.005 |
Reference:
|
[9] Cahen B.: Berezin quantization on generalized flag manifolds.Math. Scand. 105 (2009), 66–84. MR 2549798 |
Reference:
|
[10] Cahen B.: Berezin quantization for discrete series.Beiträge Algebra Geom. 51 (2010), 301–311. MR 2682458 |
Reference:
|
[11] B. Cahen: Stratonovich-Weyl correspondence for compact semisimple Lie groups.Rend. Circ. Mat. Palermo 59 (2010), 331–354. Zbl 1218.22008, MR 2745515, 10.1007/s12215-010-0026-y |
Reference:
|
[12] Cahen B.: Stratonovich-Weyl correspondence for discrete series representations.Arch. Math. (Brno) 47 (2011), 41–58. MR 2813546 |
Reference:
|
[13] Cahen B.: Berezin quantization for holomorphic discrete series representations: the non-scalar case.Beiträge Algebra Geom., DOI 10.1007/s13366-011-0066-2. |
Reference:
|
[14] Cahen M., Gutt S., Rawnsley J.: Quantization on Kähler manifolds I. Geometric interpretation of Berezin quantization.J. Geom. Phys. 7 (1990), 45–62. MR 1094730, 10.1016/0393-0440(90)90019-Y |
Reference:
|
[15] Cariñena J.F., Gracia-Bond\`\i a J.M., Vàrilly J.C.: Relativistic quantum kinematics in the Moyal representation.J. Phys. A 23 (1990), 901–933. 10.1088/0305-4470/23/6/015 |
Reference:
|
[16] Davidson M., \`Olafsson G., Zhang G.: Laplace and Segal-Bargmann transforms on Hermitian symmetric spaces and orthogonal polynomials.J. Funct. Anal. 204 (2003), 157–195. MR 2004748, 10.1016/S0022-1236(03)00101-0 |
Reference:
|
[17] De Oliveira M.P.: Some formulas for the canonical kernel function.Geom. Dedicata 86 (2001), 227–247. Zbl 0996.32011, MR 1856428, 10.1023/A:1011915708964 |
Reference:
|
[18] Folland B.: Harmonic Analysis in Phase Space.Princeton University Press, Princeton, 1989. Zbl 0682.43001, MR 0983366 |
Reference:
|
[19] Figueroa H., Gracia-Bond\` \i a J.M., Vàrilly J.C.: Moyal quantization with compact symmetry groups and noncommutative analysis.J. Math. Phys. 31 (1990), 2664-2671. MR 1075750, 10.1063/1.528967 |
Reference:
|
[20] Gracia-Bond\`\i a J.M.: Generalized Moyal quantization on homogeneous symplectic spaces.Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, MA, 1990), Contemp. Math., 134, American Mathematical Society, Providence, RI, 1992, pp. 93-114. MR 1187280 |
Reference:
|
[21] Helgason S.: Differential Geometry, Lie Groups and Symmetric Spaces.Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, Rhode Island, 2001. Zbl 0993.53002, MR 1834454 |
Reference:
|
[22] Herb R.A., Wolf J.A.: Wave packets for the relative discrete series I. The holomorphic case.J. Funct. Anal. 73 (1987), 1–37. Zbl 0625.22010, MR 0890655, 10.1016/0022-1236(87)90057-7 |
Reference:
|
[23] Knapp A.W.: Representation Theory of Semi-simple Groups. An Overview Based on Examples.Princeton Math. Series, 36, Princeton University Press, Princeton, NJ, 1986. MR 0855239 |
Reference:
|
[24] Kirillov A.A.: Lectures on the Orbit Method.Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, Rhode Island, 2004. MR 2069175 |
Reference:
|
[25] Moore C.C.: Compactifications of symmetric spaces II: The Cartan domains.Amer. J. Math. 86 (1964), no. 2, 358–378. MR 0161943, 10.2307/2373170 |
Reference:
|
[26] Neeb K.-H.: Holomorphy and Convexity in Lie Theory.de Gruyter Expositions in Mathematics, 28, Walter de Gruyter, Berlin, New York, 2000. Zbl 0936.22001, MR 1740617 |
Reference:
|
[27] Orsted B., Zhang G.: Weyl quantization and tensor products of Fock and Bergman spaces.Indiana Univ. Math. J. 43 (1994), no. 2, 551–583. MR 1291529, 10.1512/iumj.1994.43.43023 |
Reference:
|
[28] Stratonovich R.L.: On distributions in representation space.Soviet Physics. JETP 4 (1957), 891–898. Zbl 0082.19302, MR 0088173 |
Reference:
|
[29] Unterberger A., Upmeier H.: Berezin transform and invariant differential operators.Commun. Math. Phys. 164 (1994), no. 3, 563–597. Zbl 0843.32019, MR 1291245, 10.1007/BF02101491 |
Reference:
|
[30] Varadarajan V.S.: Lie groups, Lie algebras and their representations.Graduate Texts in Mathematics, 102, Springer, New York, 1984. Zbl 0955.22500, MR 0746308 |
Reference:
|
[31] Wallach N.R.: The analytic continuation of the discrete series. I.Trans. Amer. Math. Soc. 251 (1979), 1–17. Zbl 0419.22017, MR 0531967 |
Reference:
|
[32] Wildberger N.J.: On the Fourier transform of a compact semisimple Lie group.J. Austral. Math. Soc. A 56 (1994), 64–116. Zbl 0842.22015, MR 1250994, 10.1017/S1446788700034741 |
Reference:
|
[33] Zhang G.: Berezin transform on line bundles over bounded symmetric domains.J. Lie Theory 10 (2000), 111–126. Zbl 0946.43007, MR 1748086 |
Reference:
|
[34] Zhang G.: Berezin transform on real bounded symmetric domains.Trans. Amer. Math. Soc. 353 (2001), 3769–3787. Zbl 0965.22015, MR 1837258, 10.1090/S0002-9947-01-02832-X |
. |