Title:
|
Symplectic Killing spinors (English) |
Author:
|
Krýsl, Svatopluk |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
53 |
Issue:
|
1 |
Year:
|
2012 |
Pages:
|
19-35 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $(M,\omega )$ be a symplectic manifold admitting a metaplectic structure (a symplectic analogue of the Riemannian spin structure) and a torsion-free symplectic connection $\nabla$. Symplectic Killing spinor fields for this structure are sections of the symplectic spinor bundle satisfying a certain first order partial differential equation and they are the main object of this paper. We derive a necessary condition which has to be satisfied by a symplectic Killing spinor field. Using this condition one may easily compute the symplectic Killing spinor fields for the standard symplectic vector spaces and the round sphere $S^2$ equipped with the volume form of the round metric. (English) |
Keyword:
|
Fedosov manifolds |
Keyword:
|
symplectic spinors |
Keyword:
|
symplectic Killing spinors |
Keyword:
|
symplectic Dirac operators |
Keyword:
|
Segal-Shale-Weil representation |
MSC:
|
53C07 |
MSC:
|
58J60 |
idZBL:
|
Zbl 1249.53093 |
idMR:
|
MR2880908 |
. |
Date available:
|
2012-02-07T10:21:24Z |
Last updated:
|
2014-04-07 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141823 |
. |
Reference:
|
[1] Fedosov B.V.: A simple geometrical construction of deformation quantization.J. Differ. Geom. 40 (1994), no. 2, 213–238. Zbl 0812.53034, MR 1293654 |
Reference:
|
[2] Friedrich T.: Dirac-Operatoren in der Riemannschen Geometrie.Friedr. Vieweg & Sohn, Braunschweig, 1997. Zbl 0887.58060, MR 1476425 |
Reference:
|
[3] Gelfand I., Retakh V., Shubin M.: Fedosov manifolds.Adv. Math. 136 (1998), no. 1, 104–140. Zbl 0945.53047, MR 1623673, 10.1006/aima.1998.1727 |
Reference:
|
[4] Green M.B., Hull C.M.: Covariant quantum mechanics of the superstring.Phys. Lett. B 225 (1989), 57–65. MR 1006387, 10.1016/0370-2693(89)91009-5 |
Reference:
|
[5] Habermann K.: The Dirac operator on symplectic spinors.Ann. Global Anal. 13 (1995), no. 2, 155–168. Zbl 0842.58042, MR 1336211, 10.1007/BF01120331 |
Reference:
|
[6] Habermann K., Habermann L.: Introduction to symplectic Dirac operators.Lecture Notes in Mathematics, 1887, Springer, Berlin, 2006. Zbl 1102.53032, MR 2252919, 10.1007/978-3-540-33421-7_4 |
Reference:
|
[7] Kashiwara M., Vergne M.: On the Segal-Shale-Weil representation and harmonic polynomials.Invent. Math. 44 (1978), no. 1, 1–47. MR 0463359, 10.1007/BF01389900 |
Reference:
|
[8] Kostant B.: Symplectic Spinors.Symposia Mathematica, Vol. XIV, Academic Press, London, 1974, pp. 139–152. Zbl 0321.58015, MR 0400304 |
Reference:
|
[9] Krýsl S.: Howe type duality for the metaplectic group acting on symplectic spinor valued forms.J. Lie Theory, to appear; electronically available at math.RT/0508.2904. |
Reference:
|
[10] Krýsl S.: Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds.Arch. Math. (Brno) 43 (2007), 467–484. MR 2381789 |
Reference:
|
[11] Krýsl S.: Structure of the curvature tensor on symplectic spinors.J. Geom. Phys. 60 (2010), no. 9, 1251–1261; electronically available at math.DG/0812.4230. MR 2654098, 10.1016/j.geomphys.2010.04.004 |
Reference:
|
[12] Shale D.: Linear symmetries of free boson fields.Trans. Amer. Math. Soc. 103 (1962), 149–167. Zbl 0171.46901, MR 0137504, 10.1090/S0002-9947-1962-0137504-6 |
Reference:
|
[13] Tondeur P.: Affine Zusammenhänge auf Mannigfaltigkeiten mit fast-symplektischer Struktur.Comment. Math. Helv. 36 (1961), 262–268. MR 0138068 |
Reference:
|
[14] Vaisman I.: Symplectic curvature tensors.Monatsh. Math. 100 (1985), 299–327. MR 0814206, 10.1007/BF01339231 |
Reference:
|
[15] Vogan D.: Unitary representations and complex analysis.; electronically available at http://www-math.mit.edu/$\sim$dav/venice.pdf. Zbl 1143.22002 |
Reference:
|
[16] Weil A.: Sur certains groups d'opérateurs unitaires.Acta Math. 111 (1964), 143–211. MR 0165033, 10.1007/BF02391012 |
. |