Previous |  Up |  Next

Article

Title: Symplectic Killing spinors (English)
Author: Krýsl, Svatopluk
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 1
Year: 2012
Pages: 19-35
Summary lang: English
.
Category: math
.
Summary: Let $(M,\omega )$ be a symplectic manifold admitting a metaplectic structure (a symplectic analogue of the Riemannian spin structure) and a torsion-free symplectic connection $\nabla$. Symplectic Killing spinor fields for this structure are sections of the symplectic spinor bundle satisfying a certain first order partial differential equation and they are the main object of this paper. We derive a necessary condition which has to be satisfied by a symplectic Killing spinor field. Using this condition one may easily compute the symplectic Killing spinor fields for the standard symplectic vector spaces and the round sphere $S^2$ equipped with the volume form of the round metric. (English)
Keyword: Fedosov manifolds
Keyword: symplectic spinors
Keyword: symplectic Killing spinors
Keyword: symplectic Dirac operators
Keyword: Segal-Shale-Weil representation
MSC: 53C07
MSC: 58J60
idZBL: Zbl 1249.53093
idMR: MR2880908
.
Date available: 2012-02-07T10:21:24Z
Last updated: 2014-04-07
Stable URL: http://hdl.handle.net/10338.dmlcz/141823
.
Reference: [1] Fedosov B.V.: A simple geometrical construction of deformation quantization.J. Differ. Geom. 40 (1994), no. 2, 213–238. Zbl 0812.53034, MR 1293654
Reference: [2] Friedrich T.: Dirac-Operatoren in der Riemannschen Geometrie.Friedr. Vieweg & Sohn, Braunschweig, 1997. Zbl 0887.58060, MR 1476425
Reference: [3] Gelfand I., Retakh V., Shubin M.: Fedosov manifolds.Adv. Math. 136 (1998), no. 1, 104–140. Zbl 0945.53047, MR 1623673, 10.1006/aima.1998.1727
Reference: [4] Green M.B., Hull C.M.: Covariant quantum mechanics of the superstring.Phys. Lett. B 225 (1989), 57–65. MR 1006387, 10.1016/0370-2693(89)91009-5
Reference: [5] Habermann K.: The Dirac operator on symplectic spinors.Ann. Global Anal. 13 (1995), no. 2, 155–168. Zbl 0842.58042, MR 1336211, 10.1007/BF01120331
Reference: [6] Habermann K., Habermann L.: Introduction to symplectic Dirac operators.Lecture Notes in Mathematics, 1887, Springer, Berlin, 2006. Zbl 1102.53032, MR 2252919, 10.1007/978-3-540-33421-7_4
Reference: [7] Kashiwara M., Vergne M.: On the Segal-Shale-Weil representation and harmonic polynomials.Invent. Math. 44 (1978), no. 1, 1–47. MR 0463359, 10.1007/BF01389900
Reference: [8] Kostant B.: Symplectic Spinors.Symposia Mathematica, Vol. XIV, Academic Press, London, 1974, pp. 139–152. Zbl 0321.58015, MR 0400304
Reference: [9] Krýsl S.: Howe type duality for the metaplectic group acting on symplectic spinor valued forms.J. Lie Theory, to appear; electronically available at math.RT/0508.2904.
Reference: [10] Krýsl S.: Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds.Arch. Math. (Brno) 43 (2007), 467–484. MR 2381789
Reference: [11] Krýsl S.: Structure of the curvature tensor on symplectic spinors.J. Geom. Phys. 60 (2010), no. 9, 1251–1261; electronically available at math.DG/0812.4230. MR 2654098, 10.1016/j.geomphys.2010.04.004
Reference: [12] Shale D.: Linear symmetries of free boson fields.Trans. Amer. Math. Soc. 103 (1962), 149–167. Zbl 0171.46901, MR 0137504, 10.1090/S0002-9947-1962-0137504-6
Reference: [13] Tondeur P.: Affine Zusammenhänge auf Mannigfaltigkeiten mit fast-symplektischer Struktur.Comment. Math. Helv. 36 (1961), 262–268. MR 0138068
Reference: [14] Vaisman I.: Symplectic curvature tensors.Monatsh. Math. 100 (1985), 299–327. MR 0814206, 10.1007/BF01339231
Reference: [15] Vogan D.: Unitary representations and complex analysis.; electronically available at http://www-math.mit.edu/$\sim$dav/venice.pdf. Zbl 1143.22002
Reference: [16] Weil A.: Sur certains groups d'opérateurs unitaires.Acta Math. 111 (1964), 143–211. MR 0165033, 10.1007/BF02391012
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-1_2.pdf 623.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo