Previous |  Up |  Next


Clarke regular functions; singularities; Hadamard derivative
Let $X$ be a separable Banach space and $f$ a locally Lipschitz real function on $X$. For $k\in \mathbb N$, let $\Sigma_k(f)$ be the set of points $x\in X$, at which the Clarke subdifferential $\partial^Cf(x)$ is at least $k$-dimensional. It is well-known that if $f$ is convex or semiconvex (semiconcave), then $\Sigma_k(f)$ can be covered by countably many Lipschitz surfaces of codimension $k$. We show that this result holds even for each Clarke regular function (and so also for each approximately convex function). Motivated by a resent result of A.D. Ioffe, we prove also two results on arbitrary functions, which work with Hadamard directional derivatives and can be considered as generalizations of our theorem on $\Sigma_k(f)$ of Clarke regular functions (since each of them easily implies this theorem).
[1] Albano P., Cannarsa P.: Singularities of semiconcave functions in Banach spaces. in: Stochastic Analysis, Control, Optimization and Applications, W.M. McEneaney, G.G. Yin, Q. Zhang (eds.), Birkhäuser, Boston, 1999, pp. 171–190. MR 1702959 | Zbl 0923.49010
[2] Alberti G., Ambrosio L., Cannarsa P.: On the singularities of convex functions. Manuscripta Math. 76 (1992), 421–435. DOI 10.1007/BF02567770 | MR 1185029 | Zbl 0784.49011
[3] Anderson R.D., Klee V.L., Jr.: Convex functions and upper semi-continuous collections. Duke Math. J. 19 (1952), 349–357. DOI 10.1215/S0012-7094-52-01935-2 | MR 0047346 | Zbl 0047.15702
[4] Cannarsa P., Sinestrari C.: Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser, Boston, MA, 2004. MR 2041617 | Zbl 1095.49003
[5] Duda J., Zajíček L.: Smallness of singular sets of semiconvex functions in separable Banach spaces. submitted.
[6] Ioffe A.D.: Typical convexity (concavity) of Dini-Hadamard upper (lower) directional derivatives of functions on separable Banach spaces. J. Convex Anal. 17 (2010), 1019–1032. MR 2731290 | Zbl 1208.46043
[7] Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin, 1976. MR 0407617 | Zbl 0836.47009
[8] Nagai H.V., Luc D.T., Théra M.: Approximate convex functions. J. Nonlinear Convex Anal. 1 (2000), 155–176. MR 1777137
[9] Nekvinda A., Zajíček L.: Gâteaux differentiability of Lipschitz functions via directional derivatives. Real Anal. Exchange 28 (2002-2003), 287–320. MR 2009756
[10] Pavlica D.: On the points of non-differentiability of convex functions. Comment. Math. Univ. Carolin. 45 (2004), 727–734. MR 2103086 | Zbl 1100.26006
[11] Preiss D.: Almost differentiability of convex functions in Banach spaces and determination of measures by their values on balls. Collection: Geometry of Banach spaces (Strobl, 1989), London Math. Soc. Lecture Note Ser. 158, Cambridge University Press, Cambridge, 1990, pp. 237–244. MR 1110199 | Zbl 0758.46034
[12] Zajíček L.: On the differentiation of convex functions in finite and infinite dimensional spaces. Czechoslovak Math. J. 29 (1979), 340–348. MR 0536060
[13] Zajíček L.: Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space. Czechoslovak Math. J. 33 (108) (1983), 292–308. MR 0699027
[14] Zajíček L.: On Lipschitz and D.C. surfaces of finite codimension in a Banach space. Czechoslovak Math. J. 58 (133) (2008), 849–864. DOI 10.1007/s10587-008-0055-2 | MR 2455942
Partner of
EuDML logo