Article
Keywords:
Dunkl Laplacian; reproducing kernel
Summary:
In this paper, we compute explicitly the reproducing kernel of the space of homogeneous polynomials of degree $n$ and Dunkl polyharmonic of degree $m$, i.e. $\Delta_{k}^{m}u=0$, $m\in \mathbb{N}\setminus\{0\}$, where $\Delta_{k}$ is the Dunkl Laplacian and we study the convergence of the orthogonal series of Dunkl polyharmonic homogeneous polynomials.
References:
                        
[2] Dunkl C.F., Xu Y.: 
Orthogonal Polynomials of Several Variables. Cambridge Univ. Press, Cambridge, 2001. 
MR 1827871 | 
Zbl 0964.33001[4] Mejjaoli H., Trimèche K.: 
On a mean value property associated with the Dunkl Laplacian operator and applications. Integral Transform. Spec. Funct. 12 (2001), no. 3, 279–302. 
DOI 10.1080/10652460108819351 | 
MR 1872437[7] Rösler M.: 
Dunkl operators: theory and applications. Orthogonal polynomials and special functions. (Leuven, 2002), Lecture Notes in Mathematics, 1817, Springer, Berlin, 2003, pp. 93–135. 
DOI 10.1007/3-540-44945-0_3 | 
MR 2022853[9] Trimèche K.: 
The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual. Integral Transform. Spec. Funct. 12 (2001), no. 4, 349–374. 
DOI 10.1080/10652460108819358 | 
MR 1872375