Previous |  Up |  Next

Article

Title: Topology on ordered fields (English)
Author: Tanaka, Yoshio
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 1
Year: 2012
Pages: 139-147
Summary lang: English
.
Category: math
.
Summary: An ordered field is a field which has a linear order and the order topology by this order. For a subfield $F$ of an ordered field, we give characterizations for $F$ to be Dedekind-complete or Archimedean in terms of the order topology and the subspace topology on $F$. (English)
Keyword: order topology
Keyword: subspace topology
Keyword: ordered field
Keyword: Archimedes' axiom
Keyword: axiom of continuity
MSC: 12J15
MSC: 54A10
MSC: 54F05
idZBL: Zbl 1249.54072
idMR: MR2880916
.
Date available: 2012-02-07T10:29:10Z
Last updated: 2014-04-07
Stable URL: http://hdl.handle.net/10338.dmlcz/141831
.
Reference: [1] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [2] Gillman L., Jerison M.: Rings of continuous functions.D. Van Nostrand Co., Princeton, N.J.-Toronto-London-New York, 1960. Zbl 0327.46040, MR 0116199
Reference: [3] Liu C., Tanaka Y.: Metrizability of ordered additive groups.Tsukuba J. Math. 35 (2011), 169–183.
Reference: [4] Tanaka Y.: The axiom of continuity, and monotone functions.Bull. Tokyo Gakugei Univ. Nat. Sci. 57 (2005), 7–23, (Japanese). Zbl 1087.26500, MR 2286673
Reference: [5] Tanaka Y.: Ordered fields and metrizability.Bull. Tokyo Gakugei Univ. Nat. Sci. 61(2009), 1-9. Zbl 1185.54035, MR 2574357
Reference: [6] Tanaka Y.: Ordered fields and the axiom of continuity. II.Bull. Tokyo Gakugei Univ. Nat. Sci. 63 (2011), 1–11. MR 1303666
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-1_10.pdf 458.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo