Previous |  Up |  Next

Article

Title: Mesocompactness and selection theory (English)
Author: Yan, Peng-fei
Author: Yang, Zhongqiang
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 1
Year: 2012
Pages: 149-157
Summary lang: English
.
Category: math
.
Summary: A topological space $X$ is called mesocompact (sequentially mesocompact) if for every open cover ${\mathcal U}$ of $X$, there exists an open refinement ${\mathcal V}$ of ${\mathcal U}$ such that $\{V\in {\mathcal V}: V\cap K\neq \emptyset\}$ is finite for every compact set (converging sequence including its limit point) $K$ in $X$. In this paper, we give some characterizations of mesocompact (sequentially mesocompact) spaces using selection theory. (English)
Keyword: selections
Keyword: l.s.c. set-valued maps
Keyword: mesocompact
Keyword: sequentially mesocompact
Keyword: persevering compact set-valued maps
MSC: 54C60
MSC: 54C65
idZBL: Zbl 1249.54046
idMR: MR2880917
.
Date available: 2012-02-07T10:29:56Z
Last updated: 2014-04-07
Stable URL: http://hdl.handle.net/10338.dmlcz/141832
.
Reference: [1] Boone J.R.: Some characterization of paracompactness in $\chi $-space.Fund. Math. 72 (1971), 145–155. MR 0295291
Reference: [2] Choban M.: Many-valued mappings and Borel sets, II.Trans. Moscow Math. Soc. 23 (1970), 286–310.
Reference: [3] Engelking R.: General Topology.Revised and completed edition, Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [4] Michael E.: A theorem on semicontinuous set-valued funtions.Duke Math. 26 (1956), 647–652. MR 0109343, 10.1215/S0012-7094-59-02662-6
Reference: [5] Michael E.: Topologies on spaces of subsets.Trans. Amer. Math. Soc. 71 (1951), 152–182. Zbl 0043.37902, MR 0042109, 10.1090/S0002-9947-1951-0042109-4
Reference: [6] Miyazaki K.: Characterizations of paracompact-like properties by means of set-valued semi-continuous selections.Proc. Amer. Math. Soc. 129 (2001), 2777–2782. Zbl 0973.54009, MR 1838802, 10.1090/S0002-9939-01-06204-9
Reference: [7] Nedev S.: Selection and factorization theorems for set-valued mapings.Serdica 6 (1980), 291–317. MR 0644284
Reference: [8] Yan P.-F.: $\tau$ selections and its applictions on BCO.J. Math. (in Chinese) 17 (1997), 547–551. MR 1675535
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-1_11.pdf 490.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo