Previous |  Up |  Next

Article

Title: Continuity of solutions of a quasilinear hyperbolic equation with hysteresis (English)
Author: Kordulová, Petra
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 2
Year: 2012
Pages: 167-187
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to the investigation of quasilinear hyperbolic equations of first order with convex and nonconvex hysteresis operator. It is shown that in the nonconvex case the equation, whose nonlinearity is caused by the hysteresis term, has properties analogous to the quasilinear hyperbolic equation of first order. Hysteresis is represented by a functional describing adsorption and desorption on the particles of the substance. An existence result is achieved by using an approximation of implicit time discretization scheme, a priori estimates and passage to the limit; in the convex case it implies the existence of a continuous solution. (English)
Keyword: hysteresis
Keyword: quasilinear hyperbolic equations
Keyword: generalized play operator
Keyword: discontinuous solution
MSC: 34C55
MSC: 35L04
MSC: 35L50
MSC: 35L60
MSC: 35L65
MSC: 35S30
idZBL: Zbl 1249.35214
idMR: MR2899730
DOI: 10.1007/s10492-012-0011-1
.
Date available: 2012-03-05T07:04:40Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/142034
.
Reference: [1] Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces.Editure Academiei/Noordhoff International Publishing Bucuresti/Leyden (1976). Zbl 0328.47035, MR 0390843
Reference: [2] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions.Springer New York (1996). Zbl 0951.74002, MR 1411908
Reference: [3] Crandall, M. G.: An introduction to evolution governed by accretive operators. Proc. Int. Symp. Providence (1974).Dyn. Syst. 1 (1976), 131-156. MR 0636953
Reference: [4] Eleuteri, M.: An existence result for a p.d.e. with hysteresis, convection and a nonlinear boundary condition.Discrete Contin. Dyn. Syst., Suppl (2007), 344-353. Zbl 1163.35458, MR 2409229
Reference: [5] Gu, T.: Mathematical Modelling and Scale-up of Liquid Chromatography.Springer Berlin-New York (1995).
Reference: [6] Kopfová, J.: Entropy condition for a quasilinear hyperbolic equation with hysteresis.Differ. Integral Equ. 18 (2005), 451-467. Zbl 1212.35295, MR 2122709
Reference: [7] Kopfová, J.: Hysteresis in a first order hyperbolic equation.Dissipative phase transitions, Ser. Adv. Math. Appl. Sci. Vol. 71 P. Colli et al. World Scientific Hackensack (2006), 141-150. MR 2223377, 10.1142/9789812774293_0008
Reference: [8] Kordulová, P.: Asymptotic behaviour of a quasilinear hyperbolic equation with hysteresis.Nonlinear Anal., Real World Appl. 8 (2007), 1398-1409. Zbl 1132.35312, MR 2344989
Reference: [9] Krasnosel'skij, M. A., Pokrovskij, A. V.: Systems with Hysteresis.Springer Berlin (1989). Zbl 0715.73026, MR 0987431
Reference: [10] Krejčí, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. GAKUTO International Series. Mathematical Sciences and Application.Gakkotosho Tokyo (1996). MR 2466538
Reference: [11] Pavel, N. H.: Nonlinear Evolution Operators and Semigroups.Springer Berlin (1987). Zbl 0626.35003, MR 0900380
Reference: [12] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, 44.Springer New York (1983). MR 0710486
Reference: [13] Peszyńska, M., Showalter, R. E.: A transport model with adsorption hysteresis.Differ. Integral Equ. 11 (1998), 327-340. Zbl 1004.35033, MR 1741849
Reference: [14] Rhee, H.-K., Aris, R., Amundson, N. R.: First-Order Partial Differential Equations. Vol. I: Theory and Applications of Single Equations.Prentice Hall Englewood Cliffs (1986). MR 0993982
Reference: [15] Ruthven, D. M.: Principles of Adsorption and Adsorption Processes.Wiley New York (1984).
Reference: [16] Smoller, J.: Shock Waves and Reaction-Diffusion Equations.Springer New York-Heidelberg-Berlin (1983). Zbl 0508.35002, MR 0688146
Reference: [17] Visintin, A.: Differential Models of Hysteresis.Springer Berlin (1994). Zbl 0820.35004, MR 1329094
Reference: [18] Visintin, A.: Quasilinear first-order PDEs with hysteresis.J. Math. Anal. Appl. 312 (2005), 401-419. Zbl 1090.35117, MR 2179086, 10.1016/j.jmaa.2005.03.048
.

Files

Files Size Format View
AplMat_57-2012-2_6.pdf 324.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo