Title:
|
A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions (English) |
Author:
|
Baltaev, Jamol I. |
Author:
|
Kučera, Milan |
Author:
|
Väth, Martin |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
57 |
Issue:
|
2 |
Year:
|
2012 |
Pages:
|
143-165 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider a simple reaction-diffusion system exhibiting Turing's diffusion driven instability if supplemented with classical homogeneous mixed boundary conditions. We consider the case when the Neumann boundary condition is replaced by a unilateral condition of Signorini type on a part of the boundary and show the existence and location of bifurcation of stationary spatially non-homogeneous solutions. The nonsymmetric problem is reformulated as a single variational inequality with a potential operator, and a variational approach is used in a certain non-direct way. (English) |
Keyword:
|
reaction-diffusion system |
Keyword:
|
unilateral condition |
Keyword:
|
variational inequality |
Keyword:
|
local bifurcation |
Keyword:
|
variational approach |
Keyword:
|
spatial patterns |
MSC:
|
35B32 |
MSC:
|
35J50 |
MSC:
|
35J57 |
MSC:
|
35J87 |
MSC:
|
35J88 |
MSC:
|
35K57 |
MSC:
|
47J20 |
idZBL:
|
Zbl 1249.35020 |
idMR:
|
MR2899729 |
DOI:
|
10.1007/s10492-012-0010-2 |
. |
Date available:
|
2012-03-05T07:03:21Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142033 |
. |
Reference:
|
[1] Baltaev, J. I., Kučera, M.: Global bifurcation for quasivariational inequalities of reaction-diffusion type.J. Math. Anal. Appl. 345 (2008), 917-928. Zbl 1145.49004, MR 2429191, 10.1016/j.jmaa.2008.04.056 |
Reference:
|
[2] Drábek, P., Kučera, M., Míková, M.: Bifurcation points of reaction-diffusion systems with unilateral conditions.Czech. Math. J. 35 (1985), 639-660. Zbl 0604.35042, MR 0809047 |
Reference:
|
[3] Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities.Walter de Gruyter Berlin (1997). Zbl 0894.35002, MR 1460729 |
Reference:
|
[4] Edelstein-Keshet, L.: Mathematical Models in Biology.McGraw-Hill Boston (1988). Zbl 0674.92001, MR 1010228 |
Reference:
|
[5] Eisner, J.: Critical and bifurcation points of reaction-diffusion systems with conditions given by inclusions.Nonlinear Anal., Theory Methods Appl. 46 (2001), 69-90. Zbl 0980.35029, MR 1845578, 10.1016/S0362-546X(99)00446-0 |
Reference:
|
[6] Eisner, J., Kučera, M.: Spatial patterning in reaction-diffusion systems with nonstandard boundary conditions.Fields Institute Communications 25 (2000), 239-256. Zbl 0969.35019, MR 1759546 |
Reference:
|
[7] Eisner, J., Kučera, M., Recke, L.: Smooth continuation of solutions and eigenvalues for variational inequalities based on the implicit function theorem.J. Math. Anal. Appl. 274 (2002), 159-180. Zbl 1040.49006, MR 1936692, 10.1016/S0022-247X(02)00273-1 |
Reference:
|
[8] Eisner, J., Kučera, M., Recke, L.: Direction and stability of bifurcating branches for variational inequalities.J. Math. Anal. Appl. 301 (2005), 276-294. MR 2105671, 10.1016/j.jmaa.2004.07.021 |
Reference:
|
[9] Eisner, J., Kučera, M., Väth, M.: Global bifurcation for a reaction-diffusion system with inclusions.J. Anal. Anwend. 28 (2009), 373-409. Zbl 1182.35025, MR 2550696, 10.4171/ZAA/1390 |
Reference:
|
[10] Fučík, S., Kufner, A.: Nonlinear Differential Equations.Elsevier Amsterdam-Oxford-New York (1980). MR 0558764 |
Reference:
|
[11] Jones, D. S., Sleeman, B. D.: Differential Equations and Mathematical Biology.Chapman & Hall/CRC Boca Raton (2003). Zbl 1020.92001, MR 1967145 |
Reference:
|
[12] Kučera, M.: Reaction-diffusion systems: Stabilizing effect of conditions described by quasivariational inequalities.Czech. Math. J. 47 (1997), 469-486. Zbl 0898.35010, MR 1461426, 10.1023/A:1022411501260 |
Reference:
|
[13] Kučera, M., Recke, L., Eisner, J.: Smooth bifurcation for variational inequalities and reaction-diffusion systems.Progresses in Analysis J. G. W. Begehr, R. P. Gilbert, M. W. Wong World Scientific Singapore-New Jersey-London-Hong Kong (2001), 1125-1133. MR 2032793 |
Reference:
|
[14] Miersemann, E.: Verzweigungsprobleme für Variationsungleichungen.Math. Nachr. 65 (1975), 187-209 German. Zbl 0324.49035, MR 0387843, 10.1002/mana.19750650118 |
Reference:
|
[15] Mimura, M., Nishiura, Y., Yamaguti, M.: Some diffusive prey and predator systems and their bifurcation problems.Ann. New York Acad. Sci. 316 (1979), 490-510. Zbl 0437.92027, MR 0556853, 10.1111/j.1749-6632.1979.tb29492.x |
Reference:
|
[16] Murray, J. D.: Mathematical Biology, 2nd ed.Springer Berlin (1993). Zbl 0779.92001, MR 1007836 |
Reference:
|
[17] Nishiura, Y.: Global structure of bifurcating solutions of some reaction-diffusion systems and their stability problem.Proceedings of the 5th Int. Symp. Computing Methods in Applied Sciences and Engineering, Versailles, France, 1981 R. Glowinski, J. L. Lions North-Holland Amsterdam-New York-Oxford (1982). Zbl 0505.76103, MR 0784643 |
Reference:
|
[18] Quittner, P.: Bifurcation points and eigenvalues of inequalities of reaction-diffusion type.J. Reine Angew. Math. 380 (1987), 1-13. Zbl 0617.35053, MR 0916198 |
Reference:
|
[19] Recke, L., Eisner, J., Kučera, M .: Smooth bifurcation for variational inequalities based on the implicit function theorem.J. Math. Anal. Appl. 275 (2002), 615-641. Zbl 1018.34042, MR 1943769, 10.1016/S0022-247X(02)00272-X |
Reference:
|
[20] Smoller, J.: Shock Waves and Reaction-Diffusion Equations.Springer New York-Heidelberg-Berlin (1983). Zbl 0508.35002, MR 0688146 |
Reference:
|
[21] Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. II/A.Springer New York-Berlin-Heidelberg (1990). |
Reference:
|
[22] Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. III.Springer New York-Berlin-Heidelberg (1985). MR 0768749 |
Reference:
|
[23] Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. IV.Springer New York-Berlin-Heidelberg (1988). MR 0932255 |
. |