Previous |  Up |  Next

Article

Title: A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions (English)
Author: Baltaev, Jamol I.
Author: Kučera, Milan
Author: Väth, Martin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 2
Year: 2012
Pages: 143-165
Summary lang: English
.
Category: math
.
Summary: We consider a simple reaction-diffusion system exhibiting Turing's diffusion driven instability if supplemented with classical homogeneous mixed boundary conditions. We consider the case when the Neumann boundary condition is replaced by a unilateral condition of Signorini type on a part of the boundary and show the existence and location of bifurcation of stationary spatially non-homogeneous solutions. The nonsymmetric problem is reformulated as a single variational inequality with a potential operator, and a variational approach is used in a certain non-direct way. (English)
Keyword: reaction-diffusion system
Keyword: unilateral condition
Keyword: variational inequality
Keyword: local bifurcation
Keyword: variational approach
Keyword: spatial patterns
MSC: 35B32
MSC: 35J50
MSC: 35J57
MSC: 35J87
MSC: 35J88
MSC: 35K57
MSC: 47J20
idZBL: Zbl 1249.35020
idMR: MR2899729
DOI: 10.1007/s10492-012-0010-2
.
Date available: 2012-03-05T07:03:21Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/142033
.
Reference: [1] Baltaev, J. I., Kučera, M.: Global bifurcation for quasivariational inequalities of reaction-diffusion type.J. Math. Anal. Appl. 345 (2008), 917-928. Zbl 1145.49004, MR 2429191, 10.1016/j.jmaa.2008.04.056
Reference: [2] Drábek, P., Kučera, M., Míková, M.: Bifurcation points of reaction-diffusion systems with unilateral conditions.Czech. Math. J. 35 (1985), 639-660. Zbl 0604.35042, MR 0809047
Reference: [3] Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities.Walter de Gruyter Berlin (1997). Zbl 0894.35002, MR 1460729
Reference: [4] Edelstein-Keshet, L.: Mathematical Models in Biology.McGraw-Hill Boston (1988). Zbl 0674.92001, MR 1010228
Reference: [5] Eisner, J.: Critical and bifurcation points of reaction-diffusion systems with conditions given by inclusions.Nonlinear Anal., Theory Methods Appl. 46 (2001), 69-90. Zbl 0980.35029, MR 1845578, 10.1016/S0362-546X(99)00446-0
Reference: [6] Eisner, J., Kučera, M.: Spatial patterning in reaction-diffusion systems with nonstandard boundary conditions.Fields Institute Communications 25 (2000), 239-256. Zbl 0969.35019, MR 1759546
Reference: [7] Eisner, J., Kučera, M., Recke, L.: Smooth continuation of solutions and eigenvalues for variational inequalities based on the implicit function theorem.J. Math. Anal. Appl. 274 (2002), 159-180. Zbl 1040.49006, MR 1936692, 10.1016/S0022-247X(02)00273-1
Reference: [8] Eisner, J., Kučera, M., Recke, L.: Direction and stability of bifurcating branches for variational inequalities.J. Math. Anal. Appl. 301 (2005), 276-294. MR 2105671, 10.1016/j.jmaa.2004.07.021
Reference: [9] Eisner, J., Kučera, M., Väth, M.: Global bifurcation for a reaction-diffusion system with inclusions.J. Anal. Anwend. 28 (2009), 373-409. Zbl 1182.35025, MR 2550696, 10.4171/ZAA/1390
Reference: [10] Fučík, S., Kufner, A.: Nonlinear Differential Equations.Elsevier Amsterdam-Oxford-New York (1980). MR 0558764
Reference: [11] Jones, D. S., Sleeman, B. D.: Differential Equations and Mathematical Biology.Chapman & Hall/CRC Boca Raton (2003). Zbl 1020.92001, MR 1967145
Reference: [12] Kučera, M.: Reaction-diffusion systems: Stabilizing effect of conditions described by quasivariational inequalities.Czech. Math. J. 47 (1997), 469-486. Zbl 0898.35010, MR 1461426, 10.1023/A:1022411501260
Reference: [13] Kučera, M., Recke, L., Eisner, J.: Smooth bifurcation for variational inequalities and reaction-diffusion systems.Progresses in Analysis J. G. W. Begehr, R. P. Gilbert, M. W. Wong World Scientific Singapore-New Jersey-London-Hong Kong (2001), 1125-1133. MR 2032793
Reference: [14] Miersemann, E.: Verzweigungsprobleme für Variationsungleichungen.Math. Nachr. 65 (1975), 187-209 German. Zbl 0324.49035, MR 0387843, 10.1002/mana.19750650118
Reference: [15] Mimura, M., Nishiura, Y., Yamaguti, M.: Some diffusive prey and predator systems and their bifurcation problems.Ann. New York Acad. Sci. 316 (1979), 490-510. Zbl 0437.92027, MR 0556853, 10.1111/j.1749-6632.1979.tb29492.x
Reference: [16] Murray, J. D.: Mathematical Biology, 2nd ed.Springer Berlin (1993). Zbl 0779.92001, MR 1007836
Reference: [17] Nishiura, Y.: Global structure of bifurcating solutions of some reaction-diffusion systems and their stability problem.Proceedings of the 5th Int. Symp. Computing Methods in Applied Sciences and Engineering, Versailles, France, 1981 R. Glowinski, J. L. Lions North-Holland Amsterdam-New York-Oxford (1982). Zbl 0505.76103, MR 0784643
Reference: [18] Quittner, P.: Bifurcation points and eigenvalues of inequalities of reaction-diffusion type.J. Reine Angew. Math. 380 (1987), 1-13. Zbl 0617.35053, MR 0916198
Reference: [19] Recke, L., Eisner, J., Kučera, M .: Smooth bifurcation for variational inequalities based on the implicit function theorem.J. Math. Anal. Appl. 275 (2002), 615-641. Zbl 1018.34042, MR 1943769, 10.1016/S0022-247X(02)00272-X
Reference: [20] Smoller, J.: Shock Waves and Reaction-Diffusion Equations.Springer New York-Heidelberg-Berlin (1983). Zbl 0508.35002, MR 0688146
Reference: [21] Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. II/A.Springer New York-Berlin-Heidelberg (1990).
Reference: [22] Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. III.Springer New York-Berlin-Heidelberg (1985). MR 0768749
Reference: [23] Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. IV.Springer New York-Berlin-Heidelberg (1988). MR 0932255
.

Files

Files Size Format View
AplMat_57-2012-2_5.pdf 339.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo