Previous |  Up |  Next


regularity; quasilinear functionals; calculus of variations
In this paper we establish a continuity result for local minimizers of some quasilinear functionals that satisfy degenerate elliptic bounds. The non-negative function which measures the degree of degeneracy is assumed to be exponentially integrable. The minimizers are shown to have a modulus of continuity controlled by $\log \log (1/|x|)^{-1}$. Our proof adapts ideas developed for solutions of degenerate elliptic equations by J. Onninen, X. Zhong: Continuity of solutions of linear, degenerate elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), 103–116.
[1] Fusco, N., Hutchinson, J. E.: Partial regularity and everywhere continuity for a model problem from nonlinear elasticity. J. Aust. Math. Soc., Ser. A 57 (1994), 158-169. DOI 10.1017/S1446788700037496 | MR 1288671 | Zbl 0864.35032
[2] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 ed. Classics in Mathematics. Springer, Berlin (2001). MR 1814364 | Zbl 1042.35002
[3] Manfredi, J. J.: Weakly monotone functions. J. Geom. Anal. 4 (1994), 393-402. DOI 10.1007/BF02921588 | MR 1294334 | Zbl 0805.35013
[4] Morrey, C. B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43 (1938), 126-166. DOI 10.1090/S0002-9947-1938-1501936-8 | MR 1501936 | Zbl 0018.40501
[5] Morrey, C. B.: Multiple integral problems in the calculus of variations and related topics. Univ. California Publ. Math., n. Ser. 1 (1943), 1-130. MR 0011537 | Zbl 0063.04107
[6] Onninen, J., Zhong, X.: Continuity of solutions of linear, degenerate elliptic equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 6 (2007), 103-116. MR 2341517 | Zbl 1150.35055
Partner of
EuDML logo