[1] A. Arapstathis, V. K. Borkar, E. Fernández-Gaucherand, M. K. Gosh, S. I. Marcus:
Discrete-time controlled Markov processes with average cost criteria: a survey. SIAM J. Control Optim. 31 (1993), 282-334.
DOI 10.1137/0331018 |
MR 1205981
[3] R. Cavazos-Cadena, E. Fernández-Gaucherand:
Controlled Markov chains with risk-sensitive criteria: average cost, optimality equations and optimal solutions. {Math. Method Optim. Res.} 43 (1999), 121-139.
MR 1687362 |
Zbl 0953.93077
[4] R. Cavazos-Cadena, E. Fernández-Gaucherand: Risk-sensitive control in communicating average Markov decision chains. In: { Modelling Uncertainty: An examination of Stochastic Theory, Methods and Applications} (M. Dror, P. L'Ecuyer and F. Szidarovsky, eds.), Kluwer, Boston 2002, pp. 525-544.
[5] R. Cavazos-Cadena:
Solution to the risk-sensitive average cost optimality equation in a class of Markov decision processes with finite state space. {Math. Method Optim. Res.} 57 (2003), 263-285.
DOI 10.1007/s001860200256 |
MR 1973378 |
Zbl 1023.90076
[7] R. Cavazos-Cadena, D. Hernández-Hernández:
A system of Poisson equations for a non-constant Varadhan functional on a finite state space. {Appl. Math. Optim.} 53 (2006), 101-119.
DOI 10.1007/s00245-005-0840-3 |
MR 2190228
[8] R. Cavazos-Cadena, F. Salem-Silva:
The discounted method and equivalence of average criteria for risk-sensitive Markov decision processes on Borel spaces. { Appl. Math. Optim.} 61 (2009), 167-190.
DOI 10.1007/s00245-009-9080-2 |
MR 2585141
[11] G. B. Di Masi, L. Stettner:
Infinite horizon risk sensitive control of discrete time Markov processes under minorization property. {SIAM J. Control Optim.} 46 (2007), 231-252.
DOI 10.1137/040618631 |
MR 2299627 |
Zbl 1141.93067
[13] F. R. Gantmakher: The Theory of Matrices. {Chelsea}, London 1959.
[17] D. H. Jacobson:
Optimal stochastic linear systems with exponential performance criteria and their relation to stochastic differential games. {IEEE Trans. Automat. Control} 18 (1973), 124-131.
DOI 10.1109/TAC.1973.1100265 |
MR 0441523
[22] K. Sladký:
Successive approximation methods for dynamic programming models. In: Proc. Third Formator Symposium on the Analysis of Large-Scale Systems (J. Beneš and L. Bakule, eds.), Academia, Prague 1979, pp. 171-189.
Zbl 0496.90081
[23] K. Sladký:
Bounds on discrete dynamic programming recursions I. {Kybernetika} 16 (1980), 526-547.
MR 0607292 |
Zbl 0454.90085
[24] K. Sladký:
Growth rates and average optimality in risk-sensitive Markov decision chains. {Kybernetika} 44 (2008), 205-226.
MR 2428220 |
Zbl 1154.90612
[26] P. Whittle:
Optimization Over Time-Dynamic Programming and Stochastic Control. Wiley, Chichester 1983.
MR 0710833
[27] W. H. M. Zijm:
Nonnegative Matrices in Dynamic Programming. Mathematical Centre Tract, Amsterdam 1983.
MR 0723868 |
Zbl 0526.90059