[1] S. Ahmed, A. Shapiro: Solving chance-constrained stochastic programs via sampling and integer programming. In: Tutorials in Operations Research, (Z.-L. Chen and S. Raghavan, eds.), INFORMS 2008.
[2] E. Angelelli, R. Mansini, M. G. Speranza:
A comparison of MAD and CVaR models with real features. J. Banking Finance 32 (2008), 1188-1197.
DOI 10.1016/j.jbankfin.2006.07.015
[3] M. S. Bazara, H. D. Sherali, C. M. Shetty:
Nonlinear Programming: Theory and Algorithms. Wiley, Singapore 1993.
MR 2218478
[4] M. Branda: Solving real-life portfolio problem using stochastic programming and Monte-Carlo techniques. In: Proc. Mathematical Methods in Economics 2010, (M. Houda, J. Friebelová, eds.), University of South Bohemia, České Budějovice 2010.
[5] M. Branda:
Stochastic programming problems with generalized integrated chance constraints. Accepted to Optimization 2011.
MR 2955282
[6] M. Branda, J. Dupačová:
Approximations and contamination bounds for probabilistic programs. Accepted to Ann. Oper. Res. 2011 (Online first). See also SPEPS 13, 2008.
MR 2874754
[8] A. DasGupta:
Asymptotic Theory of Statistics and Probability. Springer, New York 1993.
MR 2664452
[9] J. Dupačová, M. Kopa:
Robustness in stochastic programs with risk constraints. Accepted to Ann. Oper. Res. 2011 (Online first).
MR 2989600
[10] J. Dupačová, A. Gaivoronski, Z. Kos, T. Szantai:
Stochastic programming in water management: A case study and a comparison of solution techniques. Europ. J. Oper. Res. 52 (1991), 28-44.
DOI 10.1016/0377-2217(91)90333-Q |
Zbl 0726.90048
[11] Y. M. Ermoliev, T. Y. Ermolieva, G. J. Macdonald, V. I. Norkin:
Stochastic optimization of insurance portfolios for managing exposure to catastrophic risks. Ann. Oper. Res. 99 (2000), 207-225.
DOI 10.1023/A:1019244405392 |
MR 1837739 |
Zbl 0990.90084
[12] P. Lachout:
Approximative solutions of stochastic optimization problems. Kybernetika 46 (2010), 3, 513-523.
MR 2676087 |
Zbl 1229.90110
[14] J. Nocedal, S. J. Wright:
Numerical Optimization. Springer, New York 2000.
MR 2244940
[15] B. Pagnoncelli, S. Ahmed, A. Shapiro: Computational study of a chance constrained portfolio selection problem. Optimization Online 2008.
[18] A. Prékopa:
Dual method for the solution of a one-stage stochastic programming problem with random RHS obeying a discrete probability distribution. Math. Methods Oper. Res. 34 (1990), 441-461.
DOI 10.1007/BF01421551 |
MR 1087554 |
Zbl 0724.90048
[19] A. Prékopa:
Stochastic Programming. Kluwer, Dordrecht and Académiai Kiadó, Budapest 1995.
MR 1375234 |
Zbl 0863.90116
[20] A. Prékopa:
Probabilistic programming. In: Stochastic Programming, (A. Ruszczynski and A. Shapiro,eds.), Handbook in Operations Research and Management Science, Vol. 10, Elsevier, Amsterdam 2003, pp. 267-352.
MR 2052757
[21] R. T. Rockafellar, S. Uryasev:
Conditional value-at-risk for general loss distributions. J. Banking Finance 26 (2002), 1443-1471.
DOI 10.1016/S0378-4266(02)00271-6
[22] R. T. Rockafellar, R. Wets:
Variational Analysis. Springer-Verlag, Berlin 2004.
MR 1491362
[23] A. Shapiro:
Monte Carlo sampling methods. In: Stochastic Programming, (A. Ruszczynski and A. Shapiro, eds.), Handbook in Operations Research and Management Science, Vol. 10, Elsevier, Amsterdam 2003, pp. 353-426.
MR 2052758
[24] S. W. Wallace, W. T. Ziemba:
Applications of stochastic programming. MPS-SIAM Book Series on Optimization 5 (2005), Society for Industrial and Applied Mathematics.
MR 2162941 |
Zbl 1068.90002
[25] E. Žampachová, M. Mrázek: Stochastic optimization in beam design and its reliability check. In: MENDEL 2010 - 16th Internat. Conference on Soft Computing, (R. Matoušek), ed.), Mendel Journal series, FME BUT, Brno 2010, pp. 405-410.
[26] E. Žampachová, P. Popela, M. Mrázek:
Optimum beam design via stochastic programming. Kybernetika 46 (2010), 3, 571-582.
MR 2676092 |
Zbl 1201.90145