Title:
|
Chance constrained problems: penalty reformulation and performance of sample approximation technique (English) |
Author:
|
Branda, Martin |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
48 |
Issue:
|
1 |
Year:
|
2012 |
Pages:
|
105-122 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We explore reformulation of nonlinear stochastic programs with several joint chance constraints by stochastic programs with suitably chosen penalty-type objectives. We show that the two problems are asymptotically equivalent. Simpler cases with one chance constraint and particular penalty functions were studied in [6,11]. The obtained problems with penalties and with a fixed set of feasible solutions are simpler to solve and analyze then the chance constrained programs. We discuss solving both problems using Monte-Carlo simulation techniques for the cases when the set of feasible solution is finite or infinite bounded. The approach is applied to a financial optimization problem with Value at Risk constraint, transaction costs and integer allocations. We compare the ability to generate a feasible solution of the original chance constrained problem using the sample approximations of the chance constraints directly or via sample approximation of the penalty function objective. (English) |
Keyword:
|
chance constrained problems |
Keyword:
|
penalty functions |
Keyword:
|
asymptotic equivalence |
Keyword:
|
sample approximation technique |
Keyword:
|
investment problem |
MSC:
|
62A10 |
MSC:
|
93E12 |
idZBL:
|
Zbl 1243.93117 |
idMR:
|
MR2932930 |
. |
Date available:
|
2012-03-05T08:33:36Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142065 |
. |
Reference:
|
[1] S. Ahmed, A. Shapiro: Solving chance-constrained stochastic programs via sampling and integer programming..In: Tutorials in Operations Research, (Z.-L. Chen and S. Raghavan, eds.), INFORMS 2008. |
Reference:
|
[2] E. Angelelli, R. Mansini, M. G. Speranza: A comparison of MAD and CVaR models with real features..J. Banking Finance 32 (2008), 1188-1197. 10.1016/j.jbankfin.2006.07.015 |
Reference:
|
[3] M. S. Bazara, H. D. Sherali, C. M. Shetty: Nonlinear Programming: Theory and Algorithms..Wiley, Singapore 1993. MR 2218478 |
Reference:
|
[4] M. Branda: Solving real-life portfolio problem using stochastic programming and Monte-Carlo techniques..In: Proc. Mathematical Methods in Economics 2010, (M. Houda, J. Friebelová, eds.), University of South Bohemia, České Budějovice 2010. |
Reference:
|
[5] M. Branda: Stochastic programming problems with generalized integrated chance constraints..Accepted to Optimization 2011. MR 2955282 |
Reference:
|
[6] M. Branda, J. Dupačová: Approximations and contamination bounds for probabilistic programs..Accepted to Ann. Oper. Res. 2011 (Online first). See also SPEPS 13, 2008. MR 2874754 |
Reference:
|
[7] G. Calafiore, M. C. Campi: Uncertain convex programs: randomized solutions and confidence levels..Math. Programming, Ser. A 102 (2008), 25-46. MR 2115479, 10.1007/s10107-003-0499-y |
Reference:
|
[8] A. DasGupta: Asymptotic Theory of Statistics and Probability..Springer, New York 1993. MR 2664452 |
Reference:
|
[9] J. Dupačová, M. Kopa: Robustness in stochastic programs with risk constraints..Accepted to Ann. Oper. Res. 2011 (Online first). MR 2989600 |
Reference:
|
[10] J. Dupačová, A. Gaivoronski, Z. Kos, T. Szantai: Stochastic programming in water management: A case study and a comparison of solution techniques..Europ. J. Oper. Res. 52 (1991), 28-44. Zbl 0726.90048, 10.1016/0377-2217(91)90333-Q |
Reference:
|
[11] Y. M. Ermoliev, T. Y. Ermolieva, G. J. Macdonald, V. I. Norkin: Stochastic optimization of insurance portfolios for managing exposure to catastrophic risks..Ann. Oper. Res. 99 (2000), 207-225. Zbl 0990.90084, MR 1837739, 10.1023/A:1019244405392 |
Reference:
|
[12] P. Lachout: Approximative solutions of stochastic optimization problems..Kybernetika 46 (2010), 3, 513-523. Zbl 1229.90110, MR 2676087 |
Reference:
|
[13] J. Luedtke, S. Ahmed: A sample approximation approach for optimization with probabilistic constraints..SIAM J. Optim. 19 (2008), 674-699. Zbl 1177.90301, MR 2425035, 10.1137/070702928 |
Reference:
|
[14] J. Nocedal, S. J. Wright: Numerical Optimization..Springer, New York 2000. MR 2244940 |
Reference:
|
[15] B. Pagnoncelli, S. Ahmed, A. Shapiro: Computational study of a chance constrained portfolio selection problem..Optimization Online 2008. |
Reference:
|
[16] B. Pagnoncelli, S. Ahmed, A. Shapiro: Sample average approximation method for chance constrained programming: Theory and applications..J. Optim. Theory Appl. 142 (2009), 399-416. Zbl 1175.90306, MR 2525799, 10.1007/s10957-009-9523-6 |
Reference:
|
[17] A. Prékopa: Contributions to the theory of stochastic programming..Math. Programming 4 (1973), 202-221. Zbl 0273.90045, MR 0376145, 10.1007/BF01584661 |
Reference:
|
[18] A. Prékopa: Dual method for the solution of a one-stage stochastic programming problem with random RHS obeying a discrete probability distribution..Math. Methods Oper. Res. 34 (1990), 441-461. Zbl 0724.90048, MR 1087554, 10.1007/BF01421551 |
Reference:
|
[19] A. Prékopa: Stochastic Programming..Kluwer, Dordrecht and Académiai Kiadó, Budapest 1995. Zbl 0863.90116, MR 1375234 |
Reference:
|
[20] A. Prékopa: Probabilistic programming..In: Stochastic Programming, (A. Ruszczynski and A. Shapiro,eds.), Handbook in Operations Research and Management Science, Vol. 10, Elsevier, Amsterdam 2003, pp. 267-352. MR 2052757 |
Reference:
|
[21] R. T. Rockafellar, S. Uryasev: Conditional value-at-risk for general loss distributions..J. Banking Finance 26 (2002), 1443-1471. 10.1016/S0378-4266(02)00271-6 |
Reference:
|
[22] R. T. Rockafellar, R. Wets: Variational Analysis..Springer-Verlag, Berlin 2004. MR 1491362 |
Reference:
|
[23] A. Shapiro: Monte Carlo sampling methods..In: Stochastic Programming, (A. Ruszczynski and A. Shapiro, eds.), Handbook in Operations Research and Management Science, Vol. 10, Elsevier, Amsterdam 2003, pp. 353-426. MR 2052758 |
Reference:
|
[24] S. W. Wallace, W. T. Ziemba: Applications of stochastic programming..MPS-SIAM Book Series on Optimization 5 (2005), Society for Industrial and Applied Mathematics. Zbl 1068.90002, MR 2162941 |
Reference:
|
[25] E. Žampachová, M. Mrázek: Stochastic optimization in beam design and its reliability check..In: MENDEL 2010 - 16th Internat. Conference on Soft Computing, (R. Matoušek), ed.), Mendel Journal series, FME BUT, Brno 2010, pp. 405-410. |
Reference:
|
[26] E. Žampachová, P. Popela, M. Mrázek: Optimum beam design via stochastic programming..Kybernetika 46 (2010), 3, 571-582. Zbl 1201.90145, MR 2676092 |
. |