Previous |  Up |  Next

Article

Title: Cauchy problems for discrete affine minimal surfaces (English)
Author: Craizer, Marcos
Author: Lewiner, Thomas
Author: Teixeira, Ralph
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 1
Year: 2012
Pages: 1-14
Summary lang: English
.
Category: math
.
Summary: In this paper we discuss planar quadrilateral (PQ) nets as discrete models for convex affine surfaces. As a main result, we prove a necessary and sufficient condition for a PQ net to admit a Lelieuvre co-normal vector field. Particular attention is given to the class of surfaces with discrete harmonic co-normals, which we call discrete affine minimal surfaces, and the subclass of surfaces with co-planar discrete harmonic co-normals, which we call discrete improper affine spheres. Within this classes, we show how to solve discrete Cauchy problems analogous to the Cauchy problems for smooth analytic improper affine spheres and smooth analytic affine minimal surfaces. (English)
Keyword: discrete differential geometry
Keyword: discrete affine minimal surfaces
Keyword: discrete conjugate nets
Keyword: PQ meshes
MSC: 39A12
MSC: 52C99
MSC: 53A15
idMR: MR2915845
DOI: 10.5817/AM2012-1-1
.
Date available: 2012-03-15T18:04:28Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/142085
.
Reference: [1] Aledo, J. A., Chaves, R. M. B., Gálvez, J. A.: The Cauchy problem for improper affine spheres and the Hessian one equation.Trans. Amer. Math. Soc. 359 (9) (2007), 4183–4208. Zbl 1121.53008, MR 2309181, 10.1090/S0002-9947-07-04378-4
Reference: [2] Aledo, J. A., Martínez, A., Milán, F.: The affine Cauchy problem.J. Math. Anal. Appl. 351 (2009), 70–83. Zbl 1161.53012, MR 2472921, 10.1016/j.jmaa.2008.09.055
Reference: [3] Bobenko, A. I., Schief, W. K.: Affine spheres: Discretization via duality relations.Experiment. Math. 8 (1999), no. 3, 261–280. Zbl 0972.53012, MR 1724159, 10.1080/10586458.1999.10504404
Reference: [4] : Discrete Differential Geometry.Oberwolfach Seminars, vol. 38, Birkhauser, 2008. Zbl 1185.68876, MR 2407724
Reference: [5] Bobenko, A. I., Suris, Y. B.: Discrete Differential Geometry: Integrable Structure.Graduate Studies in Mathematics, Vol. 98, AMS, 2008. Zbl 1158.53001, MR 2467378
Reference: [6] Calabi, E.: Hypersurfaces with maximal affinely invariant area.Amer. J. Math. 104 (1982), 91–126. Zbl 0501.53037, MR 0648482, 10.2307/2374069
Reference: [7] Calabi, E.: Convex affine maximal surfaces.Results Math. 13 (1988), 199–223. Zbl 0653.53006, MR 0941331, 10.1007/BF03323241
Reference: [8] Craizer, M., Anciaux, H., Lewiner, T. M.: Discrete affine minimal surfaces with indefinite metric.Differential Geom. Appl. (2009). MR 2594460, 10.1016/j.difgeo.2009.07.004
Reference: [9] Craizer, M., da Silva Moacyr, A. H. B., Teixeira, R. C.: Area distances of convex plane curves and iImproper affine spheres.SIAM J. Imaging Sci. 1 (3) (2008), 209–227. MR 2486030, 10.1137/080714610
Reference: [10] Matsuura, N.: A discrete analogue of the affine Backlund transformation.Fukuoka Univ. Sci. Rep. 40 (2) (2010), no. 2, 163–173. Zbl 1227.39005, MR 2766406
Reference: [11] Matsuura, N., Urakawa, H.: Discrete improper affine spheres.J. Geom. Phys. 45 (1–2) (2003), 164–183. Zbl 1035.53022, MR 1949349, 10.1016/S0393-0440(02)00134-1
Reference: [12] Nomizu, K., Sasaki, T.: Affine Differential Geometry.Cambridge University Press, 1994. Zbl 0834.53002, MR 1311248
.

Files

Files Size Format View
ArchMathRetro_048-2012-1_1.pdf 811.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo