Previous |  Up |  Next

Article

Title: Submanifolds with harmonic mean curvature in pseudo-Hermitian geometry (English)
Author: Inoguchi, Jun-ichi
Author: Lee, Ji-Eun
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 1
Year: 2012
Pages: 15-26
Summary lang: English
.
Category: math
.
Summary: We classify Hopf cylinders with proper mean curvature vector field in Sasakian 3-manifolds with respect to the Tanaka-Webster connection. (English)
Keyword: pseudo-hermitian mean curvature vector fields
Keyword: proper mean curvature
Keyword: biharmonic submanifolds
Keyword: biminimal immersions
MSC: 58E20
idMR: MR2915846
DOI: 10.5817/AM2012-1-15
.
Date available: 2012-03-15T18:06:19Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/142088
.
Reference: [1] Barros, M., Garay, O. J.: On submanifolds with harmonic mean curvature.Proc. Amer. Math. Soc. 123 (1995), 2545–2549. Zbl 0827.53015, MR 1254831, 10.1090/S0002-9939-1995-1254831-7
Reference: [2] Chen, B. Y.: Some classification theorems for submanifolds in Minkowski space–time.Arch. Math. (Basel) 62 (1994), 177–182. Zbl 0816.53035, MR 1255641, 10.1007/BF01198672
Reference: [3] Chen, B. Y.: Submanifolds in de Sitter space–time satisfying $\Delta H = \lambda H$.Israel J. Math. 91 (1995), 373–391. Zbl 0873.53041, MR 1348323
Reference: [4] Chen, B. Y.: Report on submanifolds of finite type.Soochow J. Math. 22 (1996), 117–337. Zbl 0867.53001, MR 1391469
Reference: [5] Cho, J. T., Inoguchi, J., Lee, J.-E.: Affine biharmonic submanifolds in 3–dimensional pseudo–Hermitian geometry.Abh. Math. Sem. Univ. Hamburg 79 (2009), 113–133. Zbl 1180.58010, MR 2541346, 10.1007/s12188-008-0014-8
Reference: [6] Defever, F.: Hypersurfaces of $E^4$ satisfying $\Delta H = \lambda H$.Michigan Math. J. 44 (1997), 355–364. MR 1460420
Reference: [7] Defever, F.: Hypersurfaces of $E^4$ with harmonic mean curvature vector.Math. Nachr. 196 (1998), 61–69. MR 1657990, 10.1002/mana.19981960104
Reference: [8] Defever, F.: Theory of semisymmetric conformally flat and biharmonic submanifolds.Balkan J. Geom. Appl. 4 (1999), 19–30. Zbl 0980.53006, MR 1751643
Reference: [9] Dimitric, I.: Submanifolds of $E^m$ with harmonic mean curvature vector.Bull. Inst. Math. Acad. Sinica 20 (1992), 53–65. MR 1166218
Reference: [10] Ferrández, A., Lucas, P., Meroño, M. A.: Biharmonic Hopf cylinders.Rocky Mountain J. Math. 28 (1998), 957–975. MR 1656996, 10.1216/rmjm/1181071748
Reference: [11] Garay, O. J.: A classification of certain 3–dimensional conformally flat Euclidean hypersurfaces.Pacific J. Math. 162 (1994), 13–25. Zbl 0791.53026, MR 1247141, 10.2140/pjm.1994.162.13
Reference: [12] Hasanis, Th., Vlachos, Th.: Hypersurfaces in $E^4$ with harmonic mean curvature vector field.Math. Nachr. 172 (1995), 145–169. MR 1330627, 10.1002/mana.19951720112
Reference: [13] Inoguchi, J.: Submanifolds with harmonic mean curvature vector field in contact 3-manifolds.Colloq. Math. 100 (2004), 163–179. Zbl 1076.53065, MR 2107514, 10.4064/cm100-2-2
Reference: [14] Inoguchi, J.: Biminimal submanifolds in 3–dimensional contact manifolds.Balkan J. Geom. Appl. 12 (1) (2007), 56–67. MR 2321968
Reference: [15] Inoguchi, J., Lee, J.-E.: Almost contact curves in normal almost contact $3$-manifolds.submitted.
Reference: [16] Inoguchi, J., Lee, J.-E.: Biminimal curves in $2$–dimensional space forms.submitted.
Reference: [17] Lee, J.-E.: On Legendre curves in contact pseudo–Hermitian 3–manifolds.Bull. Austral. Math. Soc. 81 (1) (2010), 156–164. Zbl 1185.53048, MR 2584930, 10.1017/S0004972709000872
Reference: [18] Loubeau, E., Montaldo, S.: Biminimal immersions.Proc. Edinburgh Math. Soc. (2) 51 (2008), 421–437. Zbl 1144.58010, MR 2465916
Reference: [19] Ogiue, K.: On fiberings of almost contact manifolds.Kōdai Math. Sem. Rep. 17 (1965), 53–62. Zbl 0136.18101, MR 0178428, 10.2996/kmj/1138845019
Reference: [20] O’Neill, B.: The fundamental equations of a submersion.Michigan Math. J. 13 (1966), 459–469. MR 0200865, 10.1307/mmj/1028999604
Reference: [21] Tanaka, N.: On non–degenerate real hypersurfaces, graded Lie algebras and Cartan connections.Japan. J. Math. (N.S.) 2 (1) (1976), 131–190. Zbl 0346.32010, MR 0589931
Reference: [22] Tanno, S.: Variational problems on contact Riemannian manifolds.Trans. Amer. Math. Soc. 314 (1989), 349–379. Zbl 0677.53043, MR 1000553, 10.1090/S0002-9947-1989-1000553-9
Reference: [23] Webster, S. M.: Pseudohermitian structures on a real hypersurface.J. Differential Geom. 13 (1978), 25–41. MR 0520599
.

Files

Files Size Format View
ArchMathRetro_048-2012-1_2.pdf 485.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo