[3] Chen, B. Y.:
Submanifolds in de Sitter space–time satisfying $\Delta H = \lambda H$. Israel J. Math. 91 (1995), 373–391.
MR 1348323 |
Zbl 0873.53041
[4] Chen, B. Y.:
Report on submanifolds of finite type. Soochow J. Math. 22 (1996), 117–337.
MR 1391469 |
Zbl 0867.53001
[6] Defever, F.:
Hypersurfaces of $E^4$ satisfying $\Delta H = \lambda H$. Michigan Math. J. 44 (1997), 355–364.
MR 1460420
[8] Defever, F.:
Theory of semisymmetric conformally flat and biharmonic submanifolds. Balkan J. Geom. Appl. 4 (1999), 19–30.
MR 1751643 |
Zbl 0980.53006
[9] Dimitric, I.:
Submanifolds of $E^m$ with harmonic mean curvature vector. Bull. Inst. Math. Acad. Sinica 20 (1992), 53–65.
MR 1166218
[14] Inoguchi, J.:
Biminimal submanifolds in 3–dimensional contact manifolds. Balkan J. Geom. Appl. 12 (1) (2007), 56–67.
MR 2321968
[15] Inoguchi, J., Lee, J.-E.: Almost contact curves in normal almost contact $3$-manifolds. submitted.
[16] Inoguchi, J., Lee, J.-E.: Biminimal curves in $2$–dimensional space forms. submitted.
[18] Loubeau, E., Montaldo, S.:
Biminimal immersions. Proc. Edinburgh Math. Soc. (2) 51 (2008), 421–437.
MR 2465916 |
Zbl 1144.58010
[21] Tanaka, N.:
On non–degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japan. J. Math. (N.S.) 2 (1) (1976), 131–190.
MR 0589931 |
Zbl 0346.32010
[23] Webster, S. M.:
Pseudohermitian structures on a real hypersurface. J. Differential Geom. 13 (1978), 25–41.
MR 0520599