Previous |  Up |  Next

Article

Title: Two-mode bifurcation in solution of a perturbed nonlinear fourth order differential equation (English)
Author: Mizeal, Ahmed Abbas
Author: Hussain, Mudhir A. Abdul
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 1
Year: 2012
Pages: 27-37
Summary lang: English
.
Category: math
.
Summary: In this paper, we are interested in the study of bifurcation solutions of nonlinear wave equation of elastic beams located on elastic foundations with small perturbation by using local method of Lyapunov-Schmidt.We showed that the bifurcation equation corresponding to the elastic beams equation is given by the nonlinear system of two equations. Also, we found the parameters equation of the Discriminant set of the specified problem as well as the bifurcation diagram. (English)
Keyword: bifurcation theory
Keyword: nonlinear systems
Keyword: local Lyapunov-Schmidt method
MSC: 34K18
MSC: 93C10
idMR: MR2915847
DOI: 10.5817/AM2012-1-27
.
Date available: 2012-03-15T18:07:21Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/142089
.
Reference: [1] Abdul Hussain, M. A.: Corner singularities of smooth functions in the analysis of bifurcations balance of the elastic beams and periodic waves.Ph.D. thesis, Voronezh University, Russia., 2005.
Reference: [2] Abdul Hussain, M. A.: Bifurcation solutions of elastic beams equation with small perturbation.Int. J. Math. Anal. (Ruse) 3 (18) (2009), 879–888. Zbl 1195.74093, MR 2604465
Reference: [3] Arnol’d, V. I.: Singularities of differential maps.Math. Sci. (1989).
Reference: [4] Ishibashi, Y. J.: Phenomenological theory of domain walls.Ferroelectrics 98 (1989), 193–205. 10.1080/00150198908217582
Reference: [5] Loginov, B. V.: Theory of Branching nonlinear equations in the conditions of invariance group.Fan, Tashkent (1985). MR 0878356
Reference: [6] Sapronov, Y. I.: Regular perturbation of Fredholm maps and theorem about odd field.Works Dept. of Math., Voronezh Univ. 10 (1973), 82–88.
Reference: [7] Sapronov, Y. I.: Nonlocal finite dimensional reduction in the variational boundary value problems.Mat. Zametki 49 (1991), 94–103. MR 1101555
Reference: [8] Sapronov, Y. I., Darinskii, B. M., Tcarev, C. L.: Bifurcation of extremely of Fredholm functionals.Voronezh Univ. (2004).
Reference: [9] Sapronov, Y. I., Zachepa, V. R.: Local analysis of Fredholm equation.Voronezh Univ. (2002).
Reference: [10] Thompson, J. M. T., Stewart, H. B.: Nonlinear Dynamics and Chaos.Chichester, Singapore, J. Wiley and Sons, 1986. Zbl 0601.58001, MR 0854476
Reference: [11] Vainbergm, M. M., Trenogin, V. A.: Theory of branching solutions of nonlinear equations.Math. Sci. (1969). MR 0261416
.

Files

Files Size Format View
ArchMathRetro_048-2012-1_3.pdf 456.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo