Previous |  Up |  Next

Article

Title: On numerical solution of compressible flow in time-dependent domains (English)
Author: Feistauer, Miloslav
Author: Horáček, Jaromír
Author: Kučera, Václav
Author: Prokopová, Jaroslava
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 1
Year: 2012
Pages: 1-16
Summary lang: English
.
Category: math
.
Summary: The paper deals with numerical simulation of a compressible flow in time-dependent 2D domains with a special interest in medical applications to airflow in the human vocal tract. The mathematical model of this process is described by the compressible Navier-Stokes equations. For the treatment of the time-dependent domain, the arbitrary Lagrangian-Eulerian (ALE) method is used. The discontinuous Galerkin finite element method (DGFEM) is used for the space semidiscretization of the governing equations in the ALE formulation. The time discretization is carried out with the aid of a linearized semi-implicit method with good stability properties. We present some computational results for the flow in a channel, representing a model of glottis and a part of the vocal tract, with a prescribed motion of the channel walls at the position of vocal folds. (English)
Keyword: compressible Navier-Stokes equations
Keyword: arbitrary Lagrangian-Eulerian method
Keyword: discontinuous Galerkin finite element method
Keyword: interior and boundary penalty
Keyword: semi-implicit time discretization
Keyword: biomechanics of voice
MSC: 65M60
MSC: 76M10
MSC: 76N15
idZBL: Zbl 1249.65196
idMR: MR2978442
DOI: 10.21136/MB.2012.142782
.
Date available: 2012-04-18T23:56:08Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/142782
.
Reference: [1] Arnold, D. N.: An interior penalty finite element method with discontinuous elements.SIAM J. Numer. Anal. 19 (1982), 742-760. Zbl 0482.65060, MR 0664882, 10.1137/0719052
Reference: [2] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, D.: Discontinuos Galerkin methods for elliptic problems.Discontinuous Galerkin methods. Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering 11 Cockburn, B., et al. Springer, Berlin (2000), 89-101. MR 1842165
Reference: [3] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, D.: Unified analysis of discontinuous Galerkin methods for elliptic problems.SIAM J. Numer. Anal. 39 (2001), 1749-1779. MR 1885715, 10.1137/S0036142901384162
Reference: [4] Bassi, F., Rebay, S.: High-order accurate discontinuous finite element solution of the 2{D} Euler equations.J. Comput. Phys. 138 (1997), 251-285. Zbl 0902.76056, MR 1607481, 10.1006/jcph.1997.5454
Reference: [5] Baumann, C. E., Oden, J. T.: A discontinuous $hp$ finite element method for the Euler and Navier-{S}tokes equations.Int. J. Numer. Methods Fluids 31 (1999), 79-95. Zbl 0985.76048, MR 1714511, 10.1002/(SICI)1097-0363(19990915)31:1<79::AID-FLD956>3.0.CO;2-C
Reference: [6] Davis, T. A., Duff, I. S.: A combined unifrontal/multifrontal method for unsymmetric sparse matrices.ACM Transactions on Mathematical Software 25 (1999), 1-20. Zbl 0962.65027, MR 1697461, 10.1145/305658.287640
Reference: [7] Dolejší, V.: Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows.Commun. Comput. Phys. 4 (2008), 231-274. MR 2440946
Reference: [8] Dolejší, V., Feistauer, M.: A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow.J. Comput. Phys. 198 (2004), 727-746. Zbl 1116.76386, MR 2062915, 10.1016/j.jcp.2004.01.023
Reference: [9] Dolejší, V., Feistauer, M.: Error estimates of the discontinuous Galerkin method for nonlinear nonstationary convection-diffusion problems.Numer. Func. Anal. Optimiz. 26 (2005), 349-383. Zbl 1078.65078, MR 2153838, 10.1081/NFA-200067298
Reference: [10] Dolejší, V., Feistauer, M., Hozman, J.: Analysis of semi-implicit DGFEM for nonlinear convection-diffusion problems on nonconforming meshes.Comput. Methods Appl. Mech. Engrg. 196 (2007), 2813-2827. Zbl 1121.76033, MR 2325393, 10.1016/j.cma.2006.09.025
Reference: [11] Dolejší, V., Feistauer, M., Schwab, C.: On some aspects of the discontinuous Galerkin finite element method for conservation laws.Math. Comput. Simul. 61 (2003), 333-346. Zbl 1013.65108, MR 1984135, 10.1016/S0378-4754(02)00087-3
Reference: [12] Feistauer, M., Dolejší, V., Kučera, V.: On the discontinuous Galerkin method for the simulation of compressible flow with wide range of Mach numbers.Comput. Vis. Sci. 10 (2007), 17-27. MR 2295931, 10.1007/s00791-006-0051-8
Reference: [13] Feistauer, M., Felcman, J., Straškaraba, I.: Mathematical and Computational Methods for Compressible Flow.Clarendon Press, Oxford (2003). MR 2261900
Reference: [14] Feistauer, M., Kučera, V.: On a robust discontinuous Galerkin technique for the solution of compressible flow.J. Comput. Phys. 224 (2007), 208-221. Zbl 1114.76042, MR 2322268, 10.1016/j.jcp.2007.01.035
Reference: [15] Krivodonova, L., Berger, M.: High-order accurate implementation of solid wall boundary conditions in curved geometries.J. Comput. Phys. 211 (2006), 492-512. Zbl 1138.76403, MR 2173394, 10.1016/j.jcp.2005.05.029
Reference: [16] Neustupa, J.: Existence of a weak solution to the Navier-Stokes equation in a general time-varying domain by the Rothe method.Math. Meth. Appl. Sci. 32 (2009), 653-683. Zbl 1160.35494, MR 2504002, 10.1002/mma.1059
Reference: [17] Nomura, T., Hughes, T. J. R.: An arbitrary Lagrangian-{E}ulerian finite element method for interaction of fluid and a rigid body.{Comput. Methods Appl. Mech. Engrg.} 95 (1992), 115-138. Zbl 0756.76047, 10.1016/0045-7825(92)90085-X
Reference: [18] Prokopová, J.: Numerical solution of compressible flow.Master thesis, Charles University, Praha (2008).
Reference: [19] Punčochářová, P., Fürst, J., Kozel, K., Horáček, J.: Numerical solution of compressible flow with low Mach number through oscillating glottis.Proceedings of the 9th International Conference on Flow-Induced Vibration (FIV 2008), Praha, Institute of Thermomechanics AS CR (2008), 135-140. MR 3615921
Reference: [20] Sváček, P., Feistauer, M., Horáček, J.: Numerical simulation of flow induced airfoil vibrations with large amplitudes.J. Fluids Structures 23 (2007), 391-411. 10.1016/j.jfluidstructs.2006.10.005
Reference: [21] Vegt, J. J. W. van der, Ven, H. van der: Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flow.J. Comput. Phys. 182 (2002), 546-585. MR 1941852, 10.1006/jcph.2002.7185
Reference: [22] Vijayasundaram, G.: Transonic flow simulation using upstream centered scheme of Godunov type in finite elements.J. Comput. Phys. 63 (1986), 416-433. MR 0835825, 10.1016/0021-9991(86)90202-0
Reference: [23] Zolésio, J. P.: Approximation for the wave equation in a moving domain.Proceedings of the conference Control of Partial Differential Equations. IFIP WG 7.2, Marcel Dekker, Lect. Notes Pure Appl. Math. 165, New York (1994), 271-279. Zbl 0831.35095, MR 1299150
.

Files

Files Size Format View
MathBohem_137-2012-1_1.pdf 3.224Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo