Previous |  Up |  Next


compressible Navier-Stokes equations; arbitrary Lagrangian-Eulerian method; discontinuous Galerkin finite element method; interior and boundary penalty; semi-implicit time discretization; biomechanics of voice
The paper deals with numerical simulation of a compressible flow in time-dependent 2D domains with a special interest in medical applications to airflow in the human vocal tract. The mathematical model of this process is described by the compressible Navier-Stokes equations. For the treatment of the time-dependent domain, the arbitrary Lagrangian-Eulerian (ALE) method is used. The discontinuous Galerkin finite element method (DGFEM) is used for the space semidiscretization of the governing equations in the ALE formulation. The time discretization is carried out with the aid of a linearized semi-implicit method with good stability properties. We present some computational results for the flow in a channel, representing a model of glottis and a part of the vocal tract, with a prescribed motion of the channel walls at the position of vocal folds.
[1] Arnold, D. N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982), 742-760. DOI 10.1137/0719052 | MR 0664882 | Zbl 0482.65060
[2] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, D.: Discontinuos Galerkin methods for elliptic problems. Discontinuous Galerkin methods. Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering 11 Cockburn, B., et al. Springer, Berlin (2000), 89-101. MR 1842165
[3] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001), 1749-1779. DOI 10.1137/S0036142901384162 | MR 1885715
[4] Bassi, F., Rebay, S.: High-order accurate discontinuous finite element solution of the 2{D} Euler equations. J. Comput. Phys. 138 (1997), 251-285. DOI 10.1006/jcph.1997.5454 | MR 1607481 | Zbl 0902.76056
[5] Baumann, C. E., Oden, J. T.: A discontinuous $hp$ finite element method for the Euler and Navier-{S}tokes equations. Int. J. Numer. Methods Fluids 31 (1999), 79-95. DOI 10.1002/(SICI)1097-0363(19990915)31:1<79::AID-FLD956>3.0.CO;2-C | MR 1714511 | Zbl 0985.76048
[6] Davis, T. A., Duff, I. S.: A combined unifrontal/multifrontal method for unsymmetric sparse matrices. ACM Transactions on Mathematical Software 25 (1999), 1-20. DOI 10.1145/305658.287640 | MR 1697461 | Zbl 0962.65027
[7] Dolejší, V.: Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows. Commun. Comput. Phys. 4 (2008), 231-274. MR 2440946
[8] Dolejší, V., Feistauer, M.: A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow. J. Comput. Phys. 198 (2004), 727-746. DOI 10.1016/ | MR 2062915 | Zbl 1116.76386
[9] Dolejší, V., Feistauer, M.: Error estimates of the discontinuous Galerkin method for nonlinear nonstationary convection-diffusion problems. Numer. Func. Anal. Optimiz. 26 (2005), 349-383. DOI 10.1081/NFA-200067298 | MR 2153838 | Zbl 1078.65078
[10] Dolejší, V., Feistauer, M., Hozman, J.: Analysis of semi-implicit DGFEM for nonlinear convection-diffusion problems on nonconforming meshes. Comput. Methods Appl. Mech. Engrg. 196 (2007), 2813-2827. DOI 10.1016/j.cma.2006.09.025 | MR 2325393 | Zbl 1121.76033
[11] Dolejší, V., Feistauer, M., Schwab, C.: On some aspects of the discontinuous Galerkin finite element method for conservation laws. Math. Comput. Simul. 61 (2003), 333-346. DOI 10.1016/S0378-4754(02)00087-3 | MR 1984135 | Zbl 1013.65108
[12] Feistauer, M., Dolejší, V., Kučera, V.: On the discontinuous Galerkin method for the simulation of compressible flow with wide range of Mach numbers. Comput. Vis. Sci. 10 (2007), 17-27. DOI 10.1007/s00791-006-0051-8 | MR 2295931
[13] Feistauer, M., Felcman, J., Straškaraba, I.: Mathematical and Computational Methods for Compressible Flow. Clarendon Press, Oxford (2003). MR 2261900
[14] Feistauer, M., Kučera, V.: On a robust discontinuous Galerkin technique for the solution of compressible flow. J. Comput. Phys. 224 (2007), 208-221. DOI 10.1016/ | MR 2322268 | Zbl 1114.76042
[15] Krivodonova, L., Berger, M.: High-order accurate implementation of solid wall boundary conditions in curved geometries. J. Comput. Phys. 211 (2006), 492-512. DOI 10.1016/ | MR 2173394 | Zbl 1138.76403
[16] Neustupa, J.: Existence of a weak solution to the Navier-Stokes equation in a general time-varying domain by the Rothe method. Math. Meth. Appl. Sci. 32 (2009), 653-683. DOI 10.1002/mma.1059 | MR 2504002 | Zbl 1160.35494
[17] Nomura, T., Hughes, T. J. R.: An arbitrary Lagrangian-{E}ulerian finite element method for interaction of fluid and a rigid body. {Comput. Methods Appl. Mech. Engrg.} 95 (1992), 115-138. DOI 10.1016/0045-7825(92)90085-X | Zbl 0756.76047
[18] Prokopová, J.: Numerical solution of compressible flow. Master thesis, Charles University, Praha (2008).
[19] Punčochářová, P., Fürst, J., Kozel, K., Horáček, J.: Numerical solution of compressible flow with low Mach number through oscillating glottis. Proceedings of the 9th International Conference on Flow-Induced Vibration (FIV 2008), Praha, Institute of Thermomechanics AS CR (2008), 135-140. MR 3615921
[20] Sváček, P., Feistauer, M., Horáček, J.: Numerical simulation of flow induced airfoil vibrations with large amplitudes. J. Fluids Structures 23 (2007), 391-411. DOI 10.1016/j.jfluidstructs.2006.10.005
[21] Vegt, J. J. W. van der, Ven, H. van der: Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flow. J. Comput. Phys. 182 (2002), 546-585. DOI 10.1006/jcph.2002.7185 | MR 1941852
[22] Vijayasundaram, G.: Transonic flow simulation using upstream centered scheme of Godunov type in finite elements. J. Comput. Phys. 63 (1986), 416-433. DOI 10.1016/0021-9991(86)90202-0 | MR 0835825
[23] Zolésio, J. P.: Approximation for the wave equation in a moving domain. Proceedings of the conference Control of Partial Differential Equations. IFIP WG 7.2, Marcel Dekker, Lect. Notes Pure Appl. Math. 165, New York (1994), 271-279. MR 1299150 | Zbl 0831.35095
Partner of
EuDML logo