Previous |  Up |  Next

Article

Title: The $k$-metric colorings of a graph (English)
Author: Fujie-Okamoto, Futaba
Author: Renzema, Willem
Author: Zhang, Ping
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 1
Year: 2012
Pages: 45-63
Summary lang: English
.
Category: math
.
Summary: For a nontrivial connected graph $G$ of order $n$, the detour distance $D(u,v)$ between two vertices $u$ and $v$ in $G$ is the length of a longest $u-v$ path in $G$. Detour distance is a metric on the vertex set of $G$. For each integer $k$ with $1\le k\le n-1$, a coloring $c\colon V(G)\to \mathbb N$ is a $k$-metric coloring of $G$ if $|c(u)-c(v)|+D(u,v)\ge k+1$ for every two distinct vertices $u$ and $v$ of $G$. The value $\chi _m^k(c)$ of a $k$-metric coloring $c$ is the maximum color assigned by $c$ to a vertex of $G$ and the $k$-metric chromatic number $\chi _m^k(G)$ of $G$ is the minimum value of a $k$-metric coloring of $G$. For every nontrivial connected graph $G$ of order $n$, $\chi _m^1(G)\le \chi _m^2(G)\le \cdots \le \chi _m^{n-1}(G)$. Metric chromatic numbers provide a generalization of several well-studied coloring parameters in graphs. Upper and lower bounds have been established for $\chi _m^k(G)$ in terms of other graphical parameters of a graph $G$ and exact values of $k$-metric chromatic numbers have been determined for complete multipartite graphs and cycles. For a nontrivial connected graph $G$, the anti-diameter ${\rm adiam}(G)$ is the minimum detour distance between two vertices of $G$. We show that the ${\rm adiam}(G)$-metric chromatic number of a graph $G$ provides information on the Hamiltonian properties of the graph and investigate realization results and problems on this parameter. (English)
Keyword: detour distance
Keyword: metric coloring
MSC: 05C12
MSC: 05C15
MSC: 05C78
idZBL: Zbl 1249.05093
idMR: MR2978445
DOI: 10.21136/MB.2012.142787
.
Date available: 2012-04-19T00:00:58Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/142787
.
Reference: [1] Chartrand, G., Erwin, D., Harary, F., Zhang, P.: Radio labelings of graphs.Bull. Inst. Combin. Appl. 33 (2001), 77-85. Zbl 0989.05102, MR 1913399
Reference: [2] Chartrand, G., Erwin, D., Zhang, P.: Radio antipodal colorings of graphs.Math. Bohem. 127 (2002), 57-69. Zbl 0995.05056, MR 1895247
Reference: [3] Chartrand, G., Erwin, D., Zhang, P.: A graph labeling problem suggested by FM channel restrictions.Bull. Inst. Combin. Appl. 43 (2005), 43-57. Zbl 1066.05125, MR 2116390
Reference: [4] Chartrand, G., Lesniak, L.: Graphs & Digraphs.Fourth Edition. Chapman & Hall/CRC, Boca Raton, FL (2004). MR 2107429
Reference: [5] Chartrand, G., Nebeský, L., Zhang, P.: Bounds for the Hamiltonian chromatic number of a graph.Congr. Numer. 157 (2002), 113-125. Zbl 1029.05059, MR 1985129
Reference: [6] Chartrand, G., Nebeský, L., Zhang, P.: Radio $k$-colorings of paths.Discuss. Math. Graph Theory 24 (2004), 5-21. Zbl 1056.05053, MR 2118291, 10.7151/dmgt.1209
Reference: [7] Chartrand, G., Nebeský, L., Zhang, P.: Hamiltonian colorings of graphs.Discrete Appl. Math. 146 (2005), 257-272. Zbl 1059.05046, MR 2115148, 10.1016/j.dam.2004.08.007
Reference: [8] Chartrand, G., Nebeský, L., Zhang, P.: On Hamiltonian colorings of graphs.Discrete Math. 290 (2005), 133-143. Zbl 1059.05046, MR 2123385, 10.1016/j.disc.2004.10.009
Reference: [9] Chartrand, G., Zhang, P.: Radio colorings in graphs---a survey.J. Comput. Appl. Math. 2 (2007), 237-252. MR 2563242
Reference: [10] Cozzens, M. B., Roberts, F. S.: $T$-colorings of graphs and the Channel Assignment Problem.Congr. Numer. 35 (1982), 191-208. MR 0725881
Reference: [11] Cozzens, M. B., Roberts, F. S.: Greedy algorithms for ${T}$-colorings of complete graphs and the meaningfulness of conclusions about them.J. Combin. Inform. System Sci. 16 (1991), 286-299. Zbl 0774.05037, MR 1186309
Reference: [12] Fotakis, D., Pantziou, G., Pentaris, G., Spirakis, P.: Frequency assignment in mobile and radio networks.DIMACS Series in Discrete Mathematics and Theoretical Computer Science 45 (1999), 73-90. Zbl 0929.68005, MR 1661872
Reference: [13] Georges, J. P., Mauro, D. W.: Generalized vertex labelings with a condition at distance two.Congr. Numer. 109 (1995), 141-159. Zbl 0904.05077, MR 1369305
Reference: [14] Georges, J. P., Mauro, D. W.: On the size of graphs labeled with a condition at distance two.J. Graph Theory 22 (1996), 47-57. Zbl 0848.05056, MR 1383991, 10.1002/(SICI)1097-0118(199605)22:1<47::AID-JGT7>3.0.CO;2-L
Reference: [15] Griggs, J. R., Yeh, R. K.: Labelling graphs with a condition at distance two.SIAM J. Discrete Math. 5 (1992), 586-595. MR 1186826, 10.1137/0405048
Reference: [16] Hale, W.: Frequency assignment: theory and applications.Proc. IEEE 68 (1980), 1497-1514.
Reference: [17] Harary, F., Plantholt, M.: Graphs whose radio coloring number equals the number of nodes.Centre de Recherches Mathématiques. CRM Proceedings and Lecture Notes 23 (1999), 99-100. Zbl 0941.05023, MR 1723637
Reference: [18] Heuvel, J. van den, Leese, R. A., Shepherd, M. A.: Graph labeling and radio channel assignment.J. Graph Theory 29 (1998), 263-283. MR 1653829, 10.1002/(SICI)1097-0118(199812)29:4<263::AID-JGT5>3.0.CO;2-V
Reference: [19] Khennoufa, R., Togni, O.: A note on radio antipodal colourings of paths.Math. Bohem. 130 (2005), 277-282. Zbl 1110.05033, MR 2164657
Reference: [20] Liu, D., Zhu, X.: Multi-level distance labelings and radio number for paths and cycles.SIAM J. Discrete Math. 3 (2005), 610-621. MR 2191283, 10.1137/S0895480102417768
Reference: [21] Metzger, B. H.: Spectrum management technique.Paper presented at 38th National ORSA Meeting, Detroit, MI (1970).
Reference: [22] Nebeský, L.: Hamiltonian colorings of graphs with long cycles.Math. Bohem. 128 (2003), 263-275. Zbl 1050.05055, MR 2012604
Reference: [23] Nebeský, L.: The hamiltonian chromatic number of a connected graph without large hamiltonian-connected subgraphs.Czech. Math. J. 56 (2006), 317-338. Zbl 1164.05356, MR 2291739, 10.1007/s10587-006-0020-x
Reference: [24] Okamoto, F., Renzema, W. A., Zhang, P.: Results and open problems on Hamiltonian labelings of graphs.Congr. Numer. 198 (2009), 189-206. Zbl 1206.05087, MR 2584352
Reference: [25] Roberts, F.: $T$-colorings of graphs: recent results and open problems.Discrete Math. 93 (1991), 229-245. Zbl 0751.05042, MR 1139583, 10.1016/0012-365X(91)90258-4
Reference: [26] Yeh, R. K.: A survey on labeling graphs with a condition at distance 2.Discrete Math. 306 (2006), 1217-1231. MR 2245647
Reference: [27] Walsh, T. R.: The number of edge 3-colorings of the $n$-prism.Centre de Recherches Mathématiques. CRM proceedings and Lecture Notes 23 (1999), 127-129. MR 1723640
Reference: [28] Walsh, T. R.: The cost of radio-colorings of paths and cycles.Centre de Recherches Mathématiques. CRM proceedings and Lecture Notes 23 (1999), 131-133. MR 1723641
Reference: [29] Renzema, W. A., Zhang, P.: Hamiltonian labelings of graphs.Involve 2 (2009), 95-114. Zbl 1206.05087, MR 2501348, 10.2140/involve.2009.2.95
Reference: [30] Renzema, W. A., Zhang, P.: On Hamiltonian labelings of graphs.J. Combin. Math. Combin. Comput. 74 (2010), 143-159. Zbl 1225.05158, MR 2675897
.

Files

Files Size Format View
MathBohem_137-2012-1_4.pdf 308.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo