Previous |  Up |  Next

Article

Title: On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces (English)
Author: Akbulut, Ali
Author: Guliyev, Vagif
Author: Mustafayev, Rza
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 1
Year: 2012
Pages: 27-43
Summary lang: English
.
Category: math
.
Summary: In the paper we find conditions on the pair $(\omega _1,\omega _2)$ which ensure the boundedness of the maximal operator and the Calderón-Zygmund singular integral operators from one generalized Morrey space $\mathcal {M}_{p,\omega _1}$ to another $\mathcal {M}_{p,\omega _2}$, $1<p<\infty $, and from the space $\mathcal {M}_{1,\omega _1}$ to the weak space $W\mathcal {M}_{1,\omega _2}$. As applications, we get some estimates for uniformly elliptic operators on generalized Morrey spaces. (English)
Keyword: generalized Morrey space
Keyword: maximal operator
Keyword: Hardy operator
Keyword: singular integral operator
MSC: 42B20
MSC: 42B25
MSC: 42B35
idZBL: Zbl 1250.42038
idMR: MR2978444
DOI: 10.21136/MB.2012.142786
.
Date available: 2012-04-18T23:58:46Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/142786
.
Reference: [1] Burenkov, V. I., Guliyev, H. V.: Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces.Studia Mathematica 163 (2004), 157-176. MR 2047377, 10.4064/sm163-2-4
Reference: [2] Burenkov, V. I., Guliyev, H. V., Guliyev, V. S.: Necessary and sufficient conditions for boundedness of the fractional maximal operator in the local Morrey-type spaces.J. Comput. Appl. Math. 208 (2007), 280-301. MR 2347750, 10.1016/j.cam.2006.10.085
Reference: [3] Burenkov, V. I., Guliyev, V. S., Serbetci, A., Tararykova, T. V.: Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces.Doklady Ross. Akad. Nauk. 422 (2008), 11-14. MR 2475077
Reference: [4] Burenkov, V. I., Gogatishvili, A., Guliyev, V. S., Mustafayev, R. Ch.: Boundedness of the fractional maximal operator in Morrey-type spaces.Complex Var. Elliptic Equ. 55 (2010), 739-758. MR 2674862
Reference: [5] Burenkov, V., Gogatishvili, A., Guliyev, V., Mustafayev, R.: Boundedness of the fractional maximal operator in local Morrey-type spaces.Preprint, Institute of Mathematics, AS CR, Praha (2008), 20. MR 2674862
Reference: [6] Calderón, A. P., Zygmund, A.: Singular integral operators and differential equations.Amer. J. Math. 79 (1957), 901-921. MR 0100768, 10.2307/2372441
Reference: [7] Carro, M., Pick, L., Soria, J., Stepanov, V. D.: On embeddings between classical Lorentz spaces.Math. Ineq. & Appl. 4 (2001), 397-428. Zbl 0996.46013, MR 1841071
Reference: [8] Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function.Rend. Math. 7 (1987), 273-279. Zbl 0717.42023, MR 0985999
Reference: [9] Fazio, G. D., Ragusa, M. A.: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients.J. Funct. Anal. 112 (1993), 241-256. Zbl 0822.35036, MR 1213138, 10.1006/jfan.1993.1032
Reference: [10] Guliyev, V. S.: Integral operators on function spaces on homogeneous groups and on domains in ${\mathbb R}^n$.Doctoral dissertation, Moskva, Mat. Inst. Steklov (1994), 329 Russian.
Reference: [11] Guliyev, V. S.: Function spaces, integral operators and two weighted inequalities on homogeneous groups. Some applications.Baku, Elm. (1999), 332 Russian.
Reference: [12] Guliyev, V. S.: Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces.J. Inequal. Appl. 2009, Art. ID 503948 20. Zbl 1193.42082, MR 2579556
Reference: [13] Kurata, K., Sugano, S.: A remark on estimates for uniformly elliptic operators on weighted $L_p$ spaces and Morrey spaces.Math. Nachr. 209 (2000), 137-150. Zbl 0939.35036, MR 1734362, 10.1002/(SICI)1522-2616(200001)209:1<137::AID-MANA137>3.0.CO;2-3
Reference: [14] Mizuhara, T.: Boundedness of some classical operators on generalized Morrey spaces.Harmonic Analysis S. Igari ICM 90 Satellite Proceedings, Springer, Tokyo (1991), 183-189. Zbl 0771.42007, MR 1261439
Reference: [15] Morrey, C. B.: On the solutions of quasi-linear elliptic partial differential equations.Trans. Amer. Math. Soc. 43 (1938), 126-166. Zbl 0018.40501, MR 1501936, 10.1090/S0002-9947-1938-1501936-8
Reference: [16] Murata, M.: On construction of Martin boundaries for second order elliptic equations.Pub. Res. Instit. Math. Sci. 26 (1990), 585-627. Zbl 0726.31009, MR 1081506, 10.2977/prims/1195170848
Reference: [17] Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces.Math. Nachr. 166 (1994), 95-103. MR 1273325, 10.1002/mana.19941660108
Reference: [18] Li, H. Q.: Estimations $L_p$ des opérateurs de Schrödinger sur les groupes nilpotents.J. Funct. Anal. 161 (1999), 152-218. Zbl 0929.22005, MR 1670222, 10.1006/jfan.1998.3347
Reference: [19] Peetre, J.: On convolution operators leaving ${\mathcal L}^{p,\lambda}$ spaces invariant.Ann. Mat. Appl. IV. Ser. 72 (1966), 295-304. MR 0209917
Reference: [20] Shen, Z. W.: $L_p$ estimates for Schrödinger operators with certain potentials.Ann. Inst. Fourier (Grenoble) 45 (1995), 513-546. MR 1343560, 10.5802/aif.1463
Reference: [21] Smith, H. F.: Parametrix construction for a class of subelliptic differential operators.Duke Math. J. 63 (1991), 343-354. Zbl 0777.35002, MR 1115111, 10.1215/S0012-7094-91-06314-3
Reference: [22] Stein, E. M.: Harmonic analysis: Real variable methods, orthogonality, and oscillatory integrals.Princeton Univ. Press, Princeton, NJ (1993). Zbl 0821.42001, MR 1232192
Reference: [23] Sugano, S.: Estimates for the operators $V^{\alpha} (-\Delta+V)^{-\beta}$ and $V^{\alpha} \nabla (-\Delta+V)^{-\beta}$ with certain nonnegative potentials $V$.Tokyo J. Math. 21 (1998), 441-452. MR 1663618
Reference: [24] Thangavelu, S.: Riesz transforms and the wave equations for the Hermite operators.Commun. Partial Differ. Equations 15 (1990), 1199-1215. MR 1070242, 10.1080/03605309908820720
Reference: [25] Zhong, J. P.: Harmonic analysis for some Schrödinger type operators.PhD thesis, Princeton University (1993). MR 2689454
.

Files

Files Size Format View
MathBohem_137-2012-1_3.pdf 296.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo