Previous |  Up |  Next

Article

Title: Completely dissociative groupoids (English)
Author: Braitt, Milton
Author: Hobby, David
Author: Silberger, Donald
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 1
Year: 2012
Pages: 79-97
Summary lang: English
.
Category: math
.
Summary: In a groupoid, consider arbitrarily parenthesized expressions on the $k$ variables $x_0, x_1, \dots x_{k-1}$ where each $x_i$ appears once and all variables appear in order of their indices. We call these expressions $k$-ary formal products, and denote the set containing all of them by $F^\sigma (k)$. If $u,v \in F^\sigma (k)$ are distinct, the statement that $u$ and $v$ are equal for all values of $x_0, x_1, \dots x_{k-1}$ is a generalized associative law. \endgraf Among other results, we show that many small groupoids are completely dissociative, meaning that no generalized associative law holds in them. These include the two groupoids on $\{ 0,1 \} $ where the groupoid operation is implication and NAND, respectively. (English)
Keyword: groupoid
Keyword: dissociative groupoid
Keyword: generalized associative groupoid
Keyword: formal product
Keyword: reverse Polish notation (rPn)
MSC: 05A99
MSC: 08A99
MSC: 08B99
MSC: 08C10
MSC: 20N02
idZBL: Zbl 1249.20075
idMR: MR2978447
DOI: 10.21136/MB.2012.142789
.
Date available: 2012-04-19T00:03:19Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/142789
.
Reference: [1] Birkhoff, G.: On the structure of abstract algebras.Proc. Camb. Philos. Soc. 31 (1935), 433-454. Zbl 0013.00105, 10.1017/S0305004100013463
Reference: [2] Braitt, M. S., Hobby, D., Silberger, D.: Antiassociative groupoids.Preprint available.
Reference: [3] Braitt, M. S., Silberger, D.: Subassociative groupoids.Quasigroups Relat. Syst. 14 (2006), 11-26. Zbl 1123.20059, MR 2268823
Reference: [4] Braitt, M. S., Hobby, D., Silberger, D.: The sizings and subassociativity type of a groupoid.In preparation.
Reference: [5] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra.Springer (1981). Zbl 0478.08001, MR 0648287
Reference: [6] Gould, H. W.: Research Bibliography of Two Special Sequences.Combinatorial Research Institute, West Virginia University, Morgantown (1977).
Reference: [7] Quine, W. V.: A way to simplify truth functions.Am. Math. Mon. 62 (1955), 627-631. Zbl 0068.24209, MR 0075886, 10.2307/2307285
Reference: [8] Quine, W. V.: Selected Logic Papers: Enlarged Edition.Harvard University Press (1995). MR 1329994
Reference: [9] Silberger, D. M.: Occurrences of the integer $(2n-2)!/n!(n-1)!$.Pr. Mat. 13 (1969), 91-96. Zbl 0251.05005, MR 0249310
.

Files

Files Size Format View
MathBohem_137-2012-1_6.pdf 329.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo