| Title: | A generalization of semiflows on monomials (English) | 
| Author: | Kulosman, Hamid | 
| Author: | Miller, Alica | 
| Language: | English | 
| Journal: | Mathematica Bohemica | 
| ISSN: | 0862-7959 (print) | 
| ISSN: | 2464-7136 (online) | 
| Volume: | 137 | 
| Issue: | 1 | 
| Year: | 2012 | 
| Pages: | 99-111 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $K$ be a field, $A=K[X_1,\dots , X_n]$ and $\mathbb {M}$ the set of monomials of $A$. It is well known that the set of monomial ideals of $A$ is in a bijective correspondence with the set of all subsemiflows of the $\mathbb {M}$-semiflow $\mathbb {M}$. We generalize this to the case of term ideals of $A=R[X_1,\dots , X_n]$, where $R$ is a commutative Noetherian ring. A term ideal of $A$ is an ideal of $A$ generated by a family of terms $cX_1^{\mu _1}\dots X_n^{\mu _n}$, where $c\in R$ and $\mu _1,\dots , \mu _n$ are integers $\geq 0$. (English) | 
| Keyword: | monomial ideal | 
| Keyword: | term ideal | 
| Keyword: | Dickson's lemma | 
| Keyword: | semiflow | 
| MSC: | 13A15 | 
| MSC: | 13A99 | 
| MSC: | 13F20 | 
| MSC: | 37B05 | 
| MSC: | 54H20 | 
| idZBL: | Zbl 1249.37001 | 
| idMR: | MR2978448 | 
| DOI: | 10.21136/MB.2012.142790 | 
| . | 
| Date available: | 2012-04-19T00:04:03Z | 
| Last updated: | 2020-07-29 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/142790 | 
| . | 
| Reference: | [1] Cox, D., Little, J., O'Shea, D.: Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra.Springer, New York (2007). Zbl 1118.13001, MR 2290010 | 
| Reference: | [2] Ellis, D., Ellis, R., Nerurkar, M.: The topological dynamics of semigroup actions.Trans. Am. Math. Soc. 353 (2000), 1279-1320. MR 1806740, 10.1090/S0002-9947-00-02704-5 | 
| Reference: | [3] Lombardi, H., Perdry, H.: The Buchberger Algorithm as a Tool for Ideal Theory of Polynomial Rings in Constructive Mathematics.B. Buchberger, F. Winkler, Gröbner Bases and Applications London Mathematical Society Lecture Notes Series, vol. 151, Cambridge University Press (1988), 393-407. MR 1708891 | 
| . |