Previous |  Up |  Next


perturbed bilinear system; feedback control; limit cycle
In this paper, the feedback control for a class of bilinear control systems with a small parameter is proposed to guarantee the existence of limit cycle. We use the perturbation method of seeking in approximate solution as a finite Taylor expansion of the exact solution. This perturbation method is to exploit the “smallness” of the perturbation parameter $\varepsilon$ to construct an approximate periodic solution. Furthermore, some simulation results are given to illustrate the existence of a limit cycle for this class of nonlinear control systems.
[1] T. M. Apostol: Mathematical Analysis. Addison-Wesley, 1957. MR 0087718 | Zbl 0309.26002
[2] L. Iannelli, K. H. Johansson, U. Jonsson, F. Vasca: Dither for smoothing relay feedback systems. IEEE Trans. Circuits and Systems, Part I 50 (2003), 8, 1025-1035. DOI 10.1109/TCSI.2003.815194 | MR 2008154
[3] H. K. Khalil: Nonlinear Systems. Prentice-Hall, New York 2002. Zbl 1194.93083
[4] A. I. Mees: Limit cycles stability. IMA J. Appl. Math. 11 (1972), 3, 281-295. MR 0366468
[5] R. Miller, A. Michel, G. S. Krenz: On the stability of limit cycles in nonlinear feedback systems: analysis using describing functions. IEEE Trans. Circuits and Systems 30 (1983), 9, 684-696. DOI 10.1109/TCS.1983.1085408 | MR 0718403 | Zbl 0536.93041
[6] Y. Sun: Limit cycles design for a class of bilinear control systems. Chaos, Solitons and Fractals 33 (2007), 156-162. DOI 10.1016/j.chaos.2006.01.004 | MR 2301853 | Zbl 1152.93395
[7] Y. Sun: Existence and uniqueness of limit cycle for a class of nonlinear discrete-time systems. Chaos, Solitons and Fractals 38 (2008), 89-96. DOI 10.1016/j.chaos.2006.10.031 | MR 2417646 | Zbl 1142.39307
[8] Y. Sun: The existence of the exponentially stable limit cycle for a class of nonlinear systems. Chaos, Solitons and Fractals 39 (2009), 2357-2362. DOI 10.1016/j.chaos.2007.07.006 | Zbl 1197.34045
Partner of
EuDML logo