Previous |  Up |  Next

Article

Title: The existence of limit cycle for perturbed bilinear systems (English)
Author: Damak, Hanen
Author: Hammami, Mohamed Ali
Author: Sun, Yeong-Jeu
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 2
Year: 2012
Pages: 177-189
Summary lang: English
.
Category: math
.
Summary: In this paper, the feedback control for a class of bilinear control systems with a small parameter is proposed to guarantee the existence of limit cycle. We use the perturbation method of seeking in approximate solution as a finite Taylor expansion of the exact solution. This perturbation method is to exploit the “smallness” of the perturbation parameter $\varepsilon$ to construct an approximate periodic solution. Furthermore, some simulation results are given to illustrate the existence of a limit cycle for this class of nonlinear control systems. (English)
Keyword: perturbed bilinear system
Keyword: feedback control
Keyword: limit cycle
MSC: 37G15
MSC: 70K05
idMR: MR2954318
.
Date available: 2012-05-15T16:06:28Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/142806
.
Reference: [1] T. M. Apostol: Mathematical Analysis..Addison-Wesley, 1957. Zbl 0309.26002, MR 0087718
Reference: [2] L. Iannelli, K. H. Johansson, U. Jonsson, F. Vasca: Dither for smoothing relay feedback systems..IEEE Trans. Circuits and Systems, Part I 50 (2003), 8, 1025-1035. MR 2008154, 10.1109/TCSI.2003.815194
Reference: [3] H. K. Khalil: Nonlinear Systems..Prentice-Hall, New York 2002. Zbl 1194.93083
Reference: [4] A. I. Mees: Limit cycles stability..IMA J. Appl. Math. 11 (1972), 3, 281-295. MR 0366468
Reference: [5] R. Miller, A. Michel, G. S. Krenz: On the stability of limit cycles in nonlinear feedback systems: analysis using describing functions..IEEE Trans. Circuits and Systems 30 (1983), 9, 684-696. Zbl 0536.93041, MR 0718403, 10.1109/TCS.1983.1085408
Reference: [6] Y. Sun: Limit cycles design for a class of bilinear control systems..Chaos, Solitons and Fractals 33 (2007), 156-162. Zbl 1152.93395, MR 2301853, 10.1016/j.chaos.2006.01.004
Reference: [7] Y. Sun: Existence and uniqueness of limit cycle for a class of nonlinear discrete-time systems..Chaos, Solitons and Fractals 38 (2008), 89-96. Zbl 1142.39307, MR 2417646, 10.1016/j.chaos.2006.10.031
Reference: [8] Y. Sun: The existence of the exponentially stable limit cycle for a class of nonlinear systems..Chaos, Solitons and Fractals 39 (2009), 2357-2362. Zbl 1197.34045, 10.1016/j.chaos.2007.07.006
.

Files

Files Size Format View
Kybernetika_48-2012-2_1.pdf 529.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo