Previous |  Up |  Next

Article

Title: Finite-time output feedback stabilization and control for a quadrotor mini-aircraft (English)
Author: Zhang, Chuanlin
Author: Li, Shihua
Author: Ding, Shihong
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 2
Year: 2012
Pages: 206-222
Summary lang: English
.
Category: math
.
Summary: This paper focuses on the finite-time output feedback control problem for a quad-rotor mini-aircraft system. First, a finite-time state feedback controller is designed by utilizing the finite-time control theory. Then, considering the case that the velocity states are not measurable, a finite-time stable observer is developed to estimate the unmeasurable states. Thus a finite-time output feedback controller is obtained and the stability analysis is provided to ensure the finite-time stability of the closed loop system. The proposed control method improves the convergence and disturbance rejection properties with respect to the asymptotically control results. Simulation results show the effectiveness of the proposed method. (English)
Keyword: quadrotor mini-aircraft
Keyword: finite-time stability
Keyword: finite-time observer
Keyword: output feedback
MSC: 62A10
MSC: 93E12
idMR: MR2954321
.
Date available: 2012-05-15T16:10:52Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/142809
.
Reference: [1] K. Alexis, G. Nikolakopoulos, A. Tzes: Constrained-control of a quadrotor helicopter for trajectory tracking under wind-gust disturbances..In: Proc. 15th IEEE Mediterranean Electrotechnical Conference 2010, pp. 1411-1416.
Reference: [2] K. Alexis, G. Nikolakopoulos, A. Tzes: Constrained optimal attitude control of a quadrotor helicopter subject to wind-gusts: Experimental studies..In: Proc. Amer. Control Conference 2010, pp. 4451-4455.
Reference: [3] A. Benallegue, A. Mokhtari, L. Fridman: High-order sliding-mode observer for a quadrotor UAV..Internat. J. Robust and Nonlinear Control 18 (2008), 427-440. MR 2392132, 10.1002/rnc.1225
Reference: [4] S. P. Bhat, D. S. Bernstein: Finite-time stability of homogeneous systems..In: Proc. Amer. Control Conference 1997, pp. 2513-2514.
Reference: [5] S. P. Bhat, D. S. Bernstein: Continuous finite-time stabilization of the translational and rotational double integrators..IEEE Trans. Automat. Control 43 (1998), 678-682. Zbl 0925.93821, MR 1618028, 10.1109/9.668834
Reference: [6] S. Bouabdallah, E. Murrieri, R. Siegwart: Design and control of an indoor micro quadrotor..In: Proc. IEEE International Conference on Robotics and Automation 2004, pp. 4393-4398.
Reference: [7] S. Bouabdallah, R. Siegwart: Backstepping and sliding-mode techniques applied to an indoor micro quadrotors..In: Proc. IEEE International Conference on Robotics and Automation 2005, pp. 2247-2252.
Reference: [8] P. Castillo, A. Dzul, R. Lozano: Real-time stabilization and tracking of a four-rotor mini-aircraft..IEEE Trans. Control Systems Technol. 12 (2004), 510-516. 10.1109/TCST.2004.825052
Reference: [9] L. Derafa, L. Fridman, A. Benallegue, A. Ouldali: Super twisting control algorithm for the four rotors helicopter attitude tracking problem..In: Proc. 11th International Workshop on Variable Structure Systems 2010, pp. 62-67.
Reference: [10] S. H. Ding, C. J. Qian, S. H. Li: Global stabilization of a class of feedforward systems with lower-order nonlinearities..IEEE Trans. Automat. Control 55 (2010), 691-696. MR 2654834, 10.1109/TAC.2009.2037455
Reference: [11] S. H. Ding, C. J. Qian, S. H. Li: Global stabilization of a class of upper-triangular systems with unbounded or uncontrollable linearizations..Internat. J. Robust and Nonlinear Control 21 (2010), 271-294. Zbl 1213.93182, MR 2791220, 10.1002/rnc.1591
Reference: [12] Y. Feng, X. H. Yu, Z. H. Man: Non-singular terminal sliding mode control of rigid manipulators..Automatica 38 (2002), 2159-2167. Zbl 1015.93006, MR 2134882, 10.1016/S0005-1098(02)00147-4
Reference: [13] M. T. Frye, S. H. Ding, C. J. Qian, S. H. Li: Global Finite-time stabilization of a PVTOL aircraft by output feedback..In: Proc. 48th IEEE Conference on Decision and Control 2009, pp. 2831-2836.
Reference: [14] Y. G. Hong: Finite-time stablization and stabilizability of a class of controllable systems..Systems Control Lett. 46 (2002), 231-236. MR 2010240, 10.1016/S0167-6911(02)00119-6
Reference: [15] Y. G. Hong, J. Huang, Y. S. Xu: On an output feedback finite-time stabilization problem..IEEE Trans. Automat. Control 46 (2001), 305-309. Zbl 0992.93075, MR 1814578, 10.1109/9.905699
Reference: [16] Y. G. Hong, Y. S. Xu, J. Huang: Finite time control for robot manipulators..Systems Control Lett. 46 (2002), 243-253. Zbl 0994.93041, MR 2010242, 10.1016/S0167-6911(02)00130-5
Reference: [17] A. Isidori: Nonlinear Control systems: An Introduction, Lecture Notes in Control and Information Sciences..Springer, Berlin 1985. MR 0895138
Reference: [18] L. C. Lai, C. C. Yang, C. J. Wu: Time-optimal control of a hovering quad-rotor helicopter..J. Intell. and Robotic Systems 45 (2006), 115-135. 10.1007/s10846-005-9015-3
Reference: [19] A. Levant: Sliding order and sliding accuracy in sliding mode control..Internat. J. of Control 58 (1993), 1247-1263. Zbl 0789.93063, MR 1250057, 10.1080/00207179308923053
Reference: [20] S. H. Li, S. H. Ding, Q. Li: Global set stabilization of the spacecraft attitude using finite-time control technique..Internat. J. Control 82 (2009), 822-836. MR 2523551, 10.1080/00207170802342818
Reference: [21] T. Madani, A. Benallegue: Control of a quadrotor mini-helicopter via full state backstepping technique..In: Proc. 45th IEEE Conference on Decision and Control 2006.
Reference: [22] T. Madani, A. Benallegue: Backstepping control with exact 2-sliding mode estimation for a quadrotor unmanned aerial vehicle..In: Proc. International Conference on Intelligent Robots and Systems (2007), 141-146.
Reference: [23] T. Madani, A. Benallegue: Sliding mode observer and backstepping control for a quadrotor unmanned aerial vehicles..In: Proc. Amer. Control Confer. 2007, pp. 5887-5892.
Reference: [24] T. Ménard, E. Moulay, W. Perruquetti: A global High-gain Finite-time Observer..IEEE Trans. Automat. Control 55 (2010), 1500-1506. MR 2668964, 10.1109/TAC.2010.2045698
Reference: [25] V. Mistler, A. Benallegue, N. K. M. Sirdi: Exact Linearization and Noninteracting Control of a 4 Rotors Helicopter via Dynamic Feedback..In: Proc. 2001 IEEE International Workshop on Robot and Human Interactive Communication 2001.
Reference: [26] W. Perruquetti, T. Floquet, E. Moulay: Finite time observers and secure communication..IEEE Trans. Automat. Control 53 (2008), 356-360. MR 2391590, 10.1109/TAC.2007.914264
Reference: [27] A. Polyakov, A. Poznyak: Reaching time estimation for ``super-twisting" second order sliding mode controller via Lyapunov function designing..IEEE Tran. Automat. Control 54 (2009), 1951-1955. MR 2552835, 10.1109/TAC.2009.2023781
Reference: [28] C. J. Qian, W. Lin: A continuous feedback approach to global strong stabilization of nonlinear systems..IEEE Trans. Automat. Control 46 (2001), 1061-1079. Zbl 1012.93053, MR 1842139, 10.1109/9.935058
Reference: [29] Y. J. Shen, X. H. Xia: Semi-global finite-time observers for nonlinear systems..Automatica 44 (2008), 3152-3156. Zbl 1153.93332, MR 2531419, 10.1016/j.automatica.2008.05.015
Reference: [30] A. R. Teel: A nonlinear small gain theorem for the analysis of control systems with saturation..IEEE Trans. Automat. Control 41 (1996), 1256-1270. Zbl 0863.93073, MR 1409471, 10.1109/9.536496
.

Files

Files Size Format View
Kybernetika_48-2012-2_3.pdf 448.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo