Title:
|
Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication (English) |
Author:
|
Liang, Hongtao |
Author:
|
Wang, Zhen |
Author:
|
Yue, Zongmin |
Author:
|
Lu, Ronghui |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
48 |
Issue:
|
2 |
Year:
|
2012 |
Pages:
|
190-205 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A fractional differential controller for incommensurate fractional unified chaotic system is described and proved by using the Gershgorin circle theorem in this paper. Also, based on the idea of a nonlinear observer, a new method for generalized synchronization (GS) of this system is proposed. Furthermore, the GS technique is applied in secure communication (SC), and a chaotic masking system is designed. Finally, the proposed fractional differential controller, GS and chaotic masking scheme are showed by using numerical and experimental simulations. (English) |
Keyword:
|
fractional chaotic systems |
Keyword:
|
fractional differential controller |
Keyword:
|
GS |
Keyword:
|
state observer |
Keyword:
|
Gershgorin circle theorem |
Keyword:
|
pole assignment algorithm |
Keyword:
|
SC |
Keyword:
|
chaotic masking |
MSC:
|
11T71 |
MSC:
|
65P20 |
MSC:
|
94A05 |
idMR:
|
MR2954320 |
. |
Date available:
|
2012-05-15T16:08:53Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142808 |
. |
Reference:
|
[1] M. A. Aon, S. Cortassa, D. Lloyd: Chaotic dynamics and fractal space in biochemistry: Simplicity underlies complexity..Cell Biology Internat. 24 (2000), 581-587. 10.1006/cbir.2000.0572 |
Reference:
|
[2] K. B. Arman, K. Fallahi, N. Pariz, H. Leung: A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter..Comm. Nonlinear Sci. Numer. Simul. 14 (2009), 863-879. Zbl 1221.94049, MR 2449755, 10.1016/j.cnsns.2007.11.011 |
Reference:
|
[3] S. Banerjee, D. Ghosh, A. C. Roy: Multiplexing synchronization and its applications in cryptography..Physica Scripta 78 (2008), 015010. Zbl 1166.34041, MR 2447532, 10.1088/0031-8949/78/01/015010 |
Reference:
|
[4] A. Charef, H. H. Sun, Y. Y. Tsao, B. Onaral: Fractal system as represented by singularity function..IEEE Trans. Automat. Control 37 (1992),1465-1470. Zbl 0825.58027, MR 1183117 |
Reference:
|
[5] M. J. Chen, D. P. Li, A. J. Zhang: Chaotic synchronization based on nonlinear state-observer and its application in secure communication..J. Marine Sci. Appl. 3 (2004), 64-70. 10.1007/BF02918650 |
Reference:
|
[6] G. Chen, X. Yu: Chaos Control: Theory and Applications..Springer, Berlin 2003. Zbl 1029.00015, MR 2014603 |
Reference:
|
[7] K. Diethelm, N. J. Ford, A. D. Freed: A predictor-corrector approach for the numerical solution of fractional differential equations..Nonlinear Dynamics 29 (2002), 3-22. Zbl 1009.65049, MR 1926466, 10.1023/A:1016592219341 |
Reference:
|
[8] K. Diethelm, N. J. Ford, A. D. Freed: Detailed error analysis for a fractional Adams method..Numerical Algorithms 36 (2004), 31-52. Zbl 1055.65098, MR 2063572, 10.1023/B:NUMA.0000027736.85078.be |
Reference:
|
[9] D. Ghosh: Nonlinear active observer-based generalized synchronization in time-delayed systems..Nonlinear Dynamics 59 (2010), 179-190. Zbl 1183.70050, MR 2585292, 10.1007/s11071-009-9538-4 |
Reference:
|
[10] R. M. Guerra, W. Yu: Chaotic synchronization and secure communication via sliding-mode observer..Internat. J. Bifurcation Chaos 18 (2008), 235-243. Zbl 1146.93317, MR 2400832, 10.1142/S0218127408020264 |
Reference:
|
[11] J. B. Hu, Y. Han, L. D. Zhao: Synchronizing fractional chaotic systems based on Lyapunov equation..Acta Physica Sinica 57 (2008), 7522-7526. Zbl 1199.37060, MR 2516989 |
Reference:
|
[12] J. B. Hu, Y. Han, L. D. Zhao: Adaptive control the fractional unified chaotic system based on the estimated eigenvalue theory..J. Physics: Conference Series 96 (2008), 012151. 10.1088/1742-6596/96/1/012151 |
Reference:
|
[13] A. A. Koronovskii, O. I. Moskalenko, A. E. Hramov: On the use of chaotic synchronization for secure communication..Physics-Uspekhi 52 (2009), 1213-1238. 10.3367/UFNe.0179.200912c.1281 |
Reference:
|
[14] J. H. Lü, G. R. Chen: Generating multi-scroll chaotic attractors: Theories, methods and applications..Internat. J. Bifurcation Chaos 16 (2006), 775-858. 10.1142/S0218127406015179 |
Reference:
|
[15] J. H. Lü, G. R. Chen, X. H. Yu, H. Leung: Design and analysis of multiscroll chaotic attractors from saturated function series..IEEE Trans. Circuits Systems - I: Regular Papers 51 (2003), 2476-2490. MR 2104664 |
Reference:
|
[16] J. H. Lü, G. R. Chen, S. C. Zhang: The compound structure of a new chaotic attractor..Chaos, Solitons Fractals 14 (2002), 669-672. Zbl 1067.37042, MR 1906649, 10.1016/S0960-0779(02)00007-3 |
Reference:
|
[17] J. H. Lü, F. L. Han, X. H. Yu, G. R. Chen: Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method..Automatica 40 (2004), 1677-1687. Zbl 1162.93353, MR 2155461, 10.1016/j.automatica.2004.06.001 |
Reference:
|
[18] J. H. Lü, S. M. Yu, H. Leung, G. R. Chen: Experimental verification of multidirectional multiscroll chaotic attractors..IEEE Trans. Circuits Systems - I: Regular Papers 53 (2006), 149-165. 10.1109/TCSI.2005.854412 |
Reference:
|
[19] G. Maione, P. Lino: New tuning rules for fractional $PI^\alpha$ controllers..Nonlinear Dynamics 49 (2007), 251-257. 10.1007/s11071-006-9125-x |
Reference:
|
[20] D. Matignon: Stability result on fractional differential equations with applications to control processing..In: Proc. IMACS-SMC (IMACS-SMC), Lille 1996, pp. 963-968. |
Reference:
|
[21] T. Menacer, N. Hamri: Synchronization of different chaotic fractional-order systems via approached auxiliary system the modified Chua oscillator and the modified Van der Pol-Duffing oscillator..Electr. J. Theoret. Phys. 8 (2011), 253-266. |
Reference:
|
[22] K. S. Miller, B. Ross: An Introduction to the Fractional Calculus and Fractional Differential Equations..John Wiley and Sons, New York 1993. Zbl 0789.26002, MR 1219954 |
Reference:
|
[23] C. A. Monje, V. Feliu: The fractional-order lead compensator..In: IEEE International Conference on Computational Cybernetics (ICCC), Vienna 2004, pp. 347-352. |
Reference:
|
[24] C. A. Monje, B. M. Vinagre, V. Feliu, Y. Q. Chen: Tuning and auto-tuning of fractional order controllers for industry applications..Control Engrg. Practice 16 (2008),798-812. |
Reference:
|
[25] G. J. Penga, Y. L. Jiang: Generalized projective synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal..Phys. Lett. A 372 (2008), 3963-3970. MR 2418398, 10.1016/j.physleta.2008.01.061 |
Reference:
|
[26] G. J. Penga, Y. L. Jiang, F. Chen: Generalized synchronization of fractional order chaotic systems..Physica A 387 (2008), 3738-3746. 10.1016/j.physa.2008.02.057 |
Reference:
|
[27] M. A. Savi: Chaos and order in biomedical rhythms..J. Brazil. Soc. Mechan. Sci. Engrg. 27 (2005), 157-169. |
Reference:
|
[28] D. V. Senthilkumar, M. Lakshmanan, J. Kurths: Phase synchronization in time-delay systems..Phys. Rev. E 74 (2006), 035205. 10.1103/PhysRevE.74.035205 |
Reference:
|
[29] K. S. Tang, G. Q. Zhong, G. Chen, K. F. Man: Generation of N-scroll attractors via Sine function..IEEE Trans. Circuits and Systems - I: Fundamental Theory Appl. 48 (2001), 1369-1372. MR 1854958 |
Reference:
|
[30] M. S. Tavazoei, M. Haeri, S. Bolouki, M. Siami: Using fractional-order integrator to control chaos in single-input chaotic systems..Nonlinear Dynamics 55 (2009), 179-190. Zbl 1220.70025, MR 2466113, 10.1007/s11071-008-9353-3 |
Reference:
|
[31] L. A. B. Torres, L. A. Aguirre: Transmitting information by controlling nonlinear oscillators..Physica D 196 (2004), 387-406. Zbl 1069.34057, MR 2090359, 10.1016/j.physd.2004.06.006 |
Reference:
|
[32] R. S. Varga: Matrix Iterative Analysis..Springer, Berlin 2000. Zbl 1216.65042, MR 1753713 |
Reference:
|
[33] H. U. Voss: Dynamic long-term anticipation of chaotic states..Phys. Rev. Lett. 87 (2001), 014102. 10.1103/PhysRevLett.87.014102 |
Reference:
|
[34] Z. Wang, Y. T. Wu, Y. X. Li, Y. J. Zou: Adaptive backstepping control of a nonlinear electromechanical system with unknown parameters..In: Proc. 4th International Conference on Computer Science and Education (ICCSE), Nanning 2009, pp. 441-444. |
Reference:
|
[35] Z. Wang, Y. T. Wu, Y. J. Zou: Analysis and sliding control of multi-scroll jerk circuit chaotic system..J. Xi'an University of Science and Technology 29 (2009), 765-768. |
Reference:
|
[36] T. Yang, L. O. Chua: Generalized synchronization of chaos via linear transforms..Internat. J. Bifurcation Chaos 9 (1999), 215-219. MR 1689607, 10.1142/S0218127499000092 |
Reference:
|
[37] R. Zhang, Z. Y. Xu, S. X. Yang, X. M. He: Generalized synchronization via impulsive contro..Chaos, Solitons Fractals 38 (2008), 97-105. MR 2417647, 10.1016/j.chaos.2006.10.050 |
Reference:
|
[38] P. Zhou, X. F. Cheng, N. Y. Zhang: Generalized synchronization between different fractional-order chaotic systems..Commun. Theoret. Phys. 50 (2008), 931-934. 10.1088/0253-6102/50/4/27 |
. |