Previous |  Up |  Next

Article

Title: The Doob inequality and strong law of large numbers for multidimensional arrays in general Banach spaces (English)
Author: Huan, Nguyen Van
Author: Quang, Nguyen Van
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 2
Year: 2012
Pages: 254-267
Summary lang: English
.
Category: math
.
Summary: We establish the Doob inequality for martingale difference arrays and provide a sufficient condition so that the strong law of large numbers would hold for an arbitrary array of random elements without imposing any geometric condition on the Banach space. Some corollaries are derived from the main results, they are more general than some well-known ones. (English)
Keyword: the Doob inequality
Keyword: strong law of large numbers
Keyword: martingale difference array
Keyword: Banach space
MSC: 60B12
MSC: 60E15
MSC: 60F15
MSC: 60G42
idMR: MR2954324
.
Date available: 2012-05-15T16:14:58Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/142812
.
Reference: [1] P. Assouad: Espaces $p$-lisses et $q$-convexes, inégalités de Burkholder..Séminaire Maurey-Schwartz 1975. Zbl 0318.46023, MR 0407963
Reference: [2] R. Cairoli, J. B. Walsh: Stochastic integrals in the plane..Acta Math. 134 (1975), 111-183. Zbl 0334.60026, MR 0420845, 10.1007/BF02392100
Reference: [3] A. Gut: Probability: A Graduate Course..Springer, New York 2005. Zbl 1151.60300, MR 2125120
Reference: [4] J. O. Howell, R. L. Taylor: Marcinkiewicz-Zygmund Weak Laws of Large Numbers for Unconditional Random Elements in Banach Spaces, Probability in Banach Spaces..Springer, Berlin - New York 1981. MR 0647964
Reference: [5] N. V. Huan, N. V. Quang, A. Volodin: Strong laws for blockwise martingale difference arrays in Banach spaces..Lobachevskii J. Math. 31 (2010), 326-335. MR 2745742, 10.1134/S1995080210040037
Reference: [6] H. C. Kim: The Hájek-Rényi inequality for weighted sums of negatively orthant dependent random variables..Internat. J. Contemporary Math. Sci. 1 (2006), 297-303. MR 2289035
Reference: [7] Z. A. Lagodowski: Strong laws of large numbers for $\mathbb B$-valued random fields..Discrete Dynamics in Nature and Society (2009). MR 2504837
Reference: [8] F. Móricz: Strong limit theorems for quasi-orthogonal random fields..J. Multivariate Anal. 30 (1989), 255-278. Zbl 0798.60033, MR 1015372, 10.1016/0047-259X(89)90039-0
Reference: [9] F. Móricz, U. Stadtmüller, M. Thalmaier: Strong laws for blockwise $\mathcal M$-dependent random fields..J. Theoret. Probab. 21 (2008), 660-671. MR 2425363, 10.1007/s10959-007-0127-5
Reference: [10] F. Móricz, K. L. Su, R. L. Taylor: Strong laws of large numbers for arrays of orthogonal random elements in Banach spaces..Acta Math. Hungar. 65 (1994), 1-16. Zbl 0806.60002, MR 1275656, 10.1007/BF01874465
Reference: [11] C. Noszály, T. Tómács: A general approach to strong laws of large numbers for fields of random variables..Ann. Univ. Sci. Budapest. Sect. Math. 43 (2001), 61-78. Zbl 0993.60029, MR 1847869
Reference: [12] N. V. Quang, N. V. Huan: On the strong law of large numbers and $\mathcal L_p$-convergence for double arrays of random elements in $p$-uniformly smooth Banach spaces..Stat. Probab. Lett. 79 (2009), 1891-1899. MR 2567447, 10.1016/j.spl.2009.05.014
Reference: [13] N. V. Quang, N. V. Huan: A characterization of $p$-uniformly smooth Banach spaces and weak laws of large numbers for $d$-dimensional adapted arrays..Sankhyā 72 (2010), 344-358. Zbl 1213.60086, MR 2746116, 10.1007/s13171-010-0020-7
Reference: [14] N. V. Quang, N. V. Huan: A Hájek-Rényi type maximal inequality and strong laws of large numbers for multidimensional arrays..J. Inequalities Appl. 2010. Zbl 1215.60022, MR 2765284
Reference: [15] A. Rosalsky, L. V. Thanh: On almost sure and mean convergence of normed double sums of Banach space valued random elements..Stochastic Analysis and Applications 25 (2007), 895-911. Zbl 1124.60007, MR 2335071, 10.1080/07362990701420142
Reference: [16] A. Rosalsky, L. V. Thanh: On the strong law of large numbers for sequences of blockwise independent and blockwise $p$-orthoganal random element in rademacher type $p$ banach spaces..Probab. Math. Statist. 27 (2007), 205-222. MR 2445993
Reference: [17] Q. M. Shao: A comparison theorem on moment inequalities between negatively associated and independent random variables..J. Theor. Probab. 13 (2000), 343-356. Zbl 0971.60015, MR 1777538, 10.1023/A:1007849609234
Reference: [18] R. T. Smythe: Strong laws of large numbers for $r$-dimensional arrays of random variables..Ann. Probab. 1 (1973), 164-170. Zbl 0258.60026, MR 0346881, 10.1214/aop/1176997031
Reference: [19] L. V. Thanh: On the strong law of large numbers for $d$-dimensional arrays of random variables..Electron. Comm. Probab. 12 (2007), 434-441. Zbl 1128.60023, MR 2365645
Reference: [20] W. A. Woyczyński: On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence..Probab. Math. Statist. 1 (1981), 117-131. Zbl 0502.60006, MR 0626306
Reference: [21] W. A. Woyczyński: Asymptotic Behavior of Martingales in Banach Spaces, Martingale Theory in Harmonic Analysis and Banach Spaces..Springer, Berlin - New York 1982. MR 0451394
.

Files

Files Size Format View
Kybernetika_48-2012-2_6.pdf 343.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo