Previous |  Up |  Next

Article

Title: An unbounded Berge's minimum theorem with applications to discounted Markov decision processes (English)
Author: Montes-de-Oca, Raúl
Author: Lemus-Rodríguez, Enrique
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 2
Year: 2012
Pages: 268-286
Summary lang: English
.
Category: math
.
Summary: This paper deals with a certain class of unbounded optimization problems. The optimization problems taken into account depend on a parameter. Firstly, there are established conditions which permit to guarantee the continuity with respect to the parameter of the minimum of the optimization problems under consideration, and the upper semicontinuity of the multifunction which applies each parameter into its set of minimizers. Besides, with the additional condition of uniqueness of the minimizer, its continuity is given. Some examples of nonconvex optimization problems that satisfy the conditions of the article are supplied. Secondly, the theory developed is applied to discounted Markov decision processes with unbounded cost functions and with possibly noncompact actions sets in order to obtain continuous optimal policies. This part of the paper is illustrated with two examples of the controlled Lindley's random walk. One of these examples has nonconstant action sets. (English)
Keyword: Berge's minimum theorem
Keyword: moment function
Keyword: discounted Markov decision process
Keyword: uniqueness of the optimal policy
Keyword: continuous optimal policy
MSC: 90A16
MSC: 90C40
MSC: 93E20
idMR: MR2954325
.
Date available: 2012-05-15T16:16:49Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/142813
.
Reference: [1] C. D. Aliprantis, K. C. Border: Infinite Dimensional Analysis..Third Edition. Springer-Verlag, Berlin 2006. Zbl 1156.46001, MR 2378491
Reference: [2] R. B. Ash: Real Variables with Basic Metric Space Topology..IEEE Press, New York 1993. Zbl 0920.26002, MR 1193687
Reference: [3] J. P. Aubin, I. Ekeland: Applied Nonlinear Analysis..John Wiley, New York 1984. Zbl 1115.47049, MR 0749753
Reference: [4] L. M. Ausubel, R. J. Deneckere: A generalized theorem of the maximum..Econom. Theory 3 (1993), 99-107. Zbl 1002.49500, MR 1211955, 10.1007/BF01213694
Reference: [5] C. Berge: Topological Spaces..Oliver and Boyd, Edinburgh and London 1963 (reprinted by Dover Publications, Inc., Mineola, New York 1997). Zbl 0114.38602, MR 1464690
Reference: [6] D. Cruz-Suárez, R. Montes-de-Oca, F. Salem-Silva: Conditions for the uniqueness of optimal policies of discounted Markov decision processes..Math. Methods Oper. Res. 60 (2004), 415-436. Zbl 1104.90053, MR 2106092, 10.1007/s001860400372
Reference: [7] J. Dugundji: Topology..Allyn and Bacon, Inc., Boston 1966. Zbl 0397.54003, MR 0193606
Reference: [8] P. K. Dutta, M. K.Majumdar, R. K. Sundaram: Parametric continuity in dynamic programming problems..J. Econom. Dynam. Control 18 (1994), 1069-1092. Zbl 0875.90096, MR 1298092, 10.1016/0165-1889(94)90048-5
Reference: [9] P. K. Dutta, T. Mitra: Maximum theorems for convex structures with an application to the theory of optimal intertemporal allocations..J. Math. Econom. 18 (1989), 77-86. MR 0985949, 10.1016/0304-4068(89)90006-2
Reference: [10] O. Hernández-Lerma, J. B. Lasserre: Discrete-Time Markov Control Processes: Basic Optimality Criteria..Springer-Verlag, New York 1996. Zbl 0840.93001, MR 1363487
Reference: [11] O. Hernández-Lerma, W. J. Runggaldier: Monotone approximations for convex stochastic control problems..J. Math. Systems Estim. Control 4 (1994), 99-140. Zbl 0812.93078, MR 1298550
Reference: [12] K. Hinderer: Lipschitz continuity of value functions in Markovian decision Processes..Math. Methods Oper. Res. 60 (2005), 3-22. Zbl 1093.90075, MR 2226965
Reference: [13] K. Hinderer, M. Stieglitz: Increasing and Lipschitz continuous minimizers in one-dimensional linear-convex systems without constraints: the continuous and the discrete case..Math. Methods Oper. Res. 44 (1996), 189-204. Zbl 0860.90126, MR 1409065, 10.1007/BF01194330
Reference: [14] A. Horsley, A. J. Wrobel, T. Van Zandt: Berge's maximum theorem with two topologies on the action set..Econom. Lett. 61 (1998), 285-291. Zbl 0913.90079, MR 1676329, 10.1016/S0165-1765(98)00177-3
Reference: [15] J. S. Jordan: The continuity of optimal dynamic decision rules..Econometrica 45 (1977), 1365-1376. Zbl 0363.90035, MR 0456573, 10.2307/1912305
Reference: [16] T. Kamihigashi: Stochastic optimal growth with bounded or unbounded utility and with bounded or unbounded shocks..J. Math. Econom. 43 (2007), 477-500. Zbl 1154.91032, MR 2317118, 10.1016/j.jmateco.2006.05.007
Reference: [17] T. Kamihigashi, S. Roy: A nonsmooth, nonconvex model of optimal growth..J. Econom. Theory 132 (2007), 435-460. Zbl 1142.91667, MR 2285614, 10.1016/j.jet.2005.06.007
Reference: [18] R. B. King: Beyond Quartic Equation..Birkhauser, Boston 1996. MR 1401346
Reference: [19] M. Kitayev: Semi-Markov and jump Markov control models: average cost criterion..Theory Probab. Appl. 30 (1985), 272-288. MR 0792619
Reference: [20] D. V. Lindley: The theory of queues with a single server..Proc. Cambridge Philos. Soc. 48 (1952), 277-289. Zbl 0046.35501, MR 0046597
Reference: [21] M. Majumdar, R. Radner: Stationary optimal policies with discounting in a stochastic activity analysis model..Econometrica 51 (1983), 1821-1837. MR 0720089, 10.2307/1912118
Reference: [22] S. P. Meyn: Ergodic Theorems for discrete time stochastic systems using a stochastic Lyapunov functions..SIAM J. Control Optim. 27 (1989), 1409-1439. MR 1022436, 10.1137/0327073
Reference: [23] E. A. Ok: Real Analysis with Economic Applications..Princeton University Press, Princeton 2007. Zbl 1119.26001, MR 2275400
Reference: [24] A. L. Peressini, F. E. Sullivan, J. J. Uhl: The Mathematics of Nonlinear Programming..Springer-Verlag, New York 1988. Zbl 0663.90054, MR 0932726
Reference: [25] M. L. Puterman: Markov Decision Processes: Discrete Stochastic Dynamic Programming..John Wiley, New York 1994. Zbl 1184.90170, MR 1270015
Reference: [26] U. Rieder: Measurable selection theorems for optimization problems..Manuscripta Math. 24 (1978), 115-131. Zbl 0385.28005, MR 0493590, 10.1007/BF01168566
Reference: [27] H. L. Royden: Real Analysis..Third Edition. Macmillan, New York 1988. Zbl 1191.26002, MR 1013117
Reference: [28] R. H. Stockbridge: Time-average control of martingale problems: a linear programming formulation..Ann. Probab. 18 (1990), 291-314. Zbl 0699.49019, MR 1043944
Reference: [29] R. Sundaram: A First Course in Optimization Theory..Cambridge University Press, Cambridge 1996. Zbl 0885.90106, MR 1402910
Reference: [30] G. Tian, J. Zhou: The maximum theorem and the existence of Nash equilibrium of (generalized) games without lower semicontinuities..J. Math. Anal. Appl. 166 (1992), 351-364. Zbl 0761.90110, MR 1160931, 10.1016/0022-247X(92)90302-T
Reference: [31] G. Tian, J. Zhou: Transfer continuities, generalizations of the Weierstrass and maximum theorem: a full characterization..J. Math. Econom. 24 (1995), 281-303. MR 1320200, 10.1016/0304-4068(94)00687-6
Reference: [32] M. Walker: A generalization of the maximum theorem..Internat. Econom. Rev. 20 (1979), 267-272. Zbl 0406.90001, MR 0525439, 10.2307/2526431
Reference: [33] A. Yushkevich: Blackwell optimality in Borelian continuous-in-action Markov decision processes..SIAM J. Control Optim. 35 (1997), 2157-2182. Zbl 0892.93059, MR 1478659, 10.1137/S0363012995292469
.

Files

Files Size Format View
Kybernetika_48-2012-2_7.pdf 346.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo