Previous |  Up |  Next

Article

Title: $g$-natural metrics of constant curvature on unit tangent sphere bundles (English)
Author: Abbassi, M. T. K.
Author: Calvaruso, G.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 2
Year: 2012
Pages: 81-95
Summary lang: English
.
Category: math
.
Summary: We completely classify Riemannian $g$-natural metrics of constant sectional curvature on the unit tangent sphere bundle $T_1 M$ of a Riemannian manifold $(M,g)$. Since the base manifold $M$ turns out to be necessarily two-dimensional, weaker curvature conditions are also investigated for a Riemannian $g$-natural metric on the unit tangent sphere bundle of a Riemannian surface. (English)
Keyword: unit tangent sphere bundle
Keyword: $g$-natural metric
Keyword: curvature tensor
Keyword: contact metric geometry
MSC: 53C15
MSC: 53C25
MSC: 53D10
idMR: MR2946208
DOI: 10.5817/AM2012-2-81
.
Date available: 2012-06-08T08:29:51Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/142821
.
Reference: [1] Abbassi, K. M. T., Calvaruso, G.: $g$–natural contact metrics on unit tangent sphere bundles.Monaths. Math. 151 (2006), 89–109. 10.1007/s00605-006-0421-9
Reference: [2] Abbassi, K. M. T., Calvaruso, G.: The curvature tensor of $g$-natural metrics on unit tangent sphere bundles.Int. J. Contemp. Math. Sci. 6 (3) (2008), 245–258. Zbl 1148.53018, MR 2400090
Reference: [3] Abbassi, K. M. T., Kowalski, O.: Naturality of homogeneous metrics on Stiefel manifolds $SO(m+1)/SO(m-1)$.Differential Geom. Appl. 28 (2010), 131–139. Zbl 1190.53020, MR 2594457, 10.1016/j.difgeo.2009.05.007
Reference: [4] Abbassi, K. M. T., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds.Arch. Math. (Brno) 41 (2005), 71–92. Zbl 1114.53015, MR 2142144
Reference: [5] Abbassi, K. M. T., Sarih, M.: On some hereditary properties of Riemannian $g$-natural metrics on tangent bundles of Riemannian manifolds.Differential Geom. Appl. 22 (1) (2005), 19–47. Zbl 1068.53016, MR 2106375
Reference: [6] Boeckx, E., Vanhecke, L.: Unit tangent bundles with constant scalar curvature.Czechoslovak Math. J. 51 (2001), 523–544. MR 1851545, 10.1023/A:1013779805244
Reference: [7] Calvaruso, G.: Contact metric geometry of the unit tangent sphere bundle. In: Complex, Contact and Symmetric manifolds, in Honor of L. Vanhecke.: Complex, Contact and Symmetric manifolds, in Honor of L. Vanhecke, Progr. Math. 234 (2005), 271–285. MR 2105140
Reference: [8] Kolář, I., Michor, P. W., Slovák, J.: Natural operations in differential geometry.Springer–Verlag, Berlin, 1993. Zbl 0782.53013, MR 1202431
Reference: [9] Kowalski, O.: On curvature homogeneous spaces.Publ. Dep. Geom. Topologia, Univ. Santiago Compostela (Cordero, L. A. et al., ed.), 1998, pp. 193–205. Zbl 0911.53030
Reference: [10] Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles – a classification.Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1–29. Zbl 0656.53021, MR 0974641
.

Files

Files Size Format View
ArchMathRetro_048-2012-2_1.pdf 511.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo