Previous |  Up |  Next

Article

Title: $\delta$-ideals in pseudo-complemented distributive lattices (English)
Author: Sambasiva Rao, M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 2
Year: 2012
Pages: 97-105
Summary lang: English
.
Category: math
.
Summary: The concept of $\delta$-ideals is introduced in a pseudo-complemented distributive lattice and some properties of these ideals are studied. Stone lattices are characterized in terms of $\delta$-ideals. A set of equivalent conditions is obtained to characterize a Boolean algebra in terms of $\delta$-ideals. Finally, some properties of $\delta$-ideals are studied with respect to homomorphisms and filter congruences. (English)
Keyword: pseudo-complemented distributive lattice
Keyword: dense element
Keyword: closed element
Keyword: $\delta$-ideal
Keyword: Stone lattice
Keyword: congruence
MSC: 06D15
MSC: 06D99
idMR: MR2946209
DOI: 10.5817/AM2012-2-97
.
Date available: 2012-06-08T08:30:51Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/142823
.
Reference: [1] Balbes, R., Horn, A.: Stone lattices.Duke Math. J. 37 (1970), 537–545. Zbl 0207.02802, MR 0277448
Reference: [2] Birkhoff, G.: Lattice Theory.Colloquium Publications, vol. 25, Amer. Math. Soc., New York, 1948. Zbl 0033.10103, MR 0029876
Reference: [3] Cornish, W. H.: Congruences on distributive pseudocomplemented lattices.Bull. Austral. Math. Soc. 8 (1973), 161–179. Zbl 0251.06018, MR 0318024, 10.1017/S0004972700042404
Reference: [4] Frink, O.: Pseudo-complements in semi-lattices.Duke Math. J. 29 (1962), 505–514. Zbl 0114.01602, MR 0140449, 10.1215/S0012-7094-62-02951-4
Reference: [5] Grätzer, G.: A generalization on Stone’s representation theorem for Boolean algebras.Duke Math. J. 30 (1963), 469–474. MR 0153605, 10.1215/S0012-7094-63-03051-5
Reference: [6] Grätzer, G.: General lattice theory.Academic Press, New York, San Francisco, 1978. Zbl 0436.06001, MR 0509213
Reference: [7] Speed, T. P.: Two congruences on distributive lattices.Bull. Soc. Roy. Sci. Liège 38 (3–4) (1969), 86–95. Zbl 0176.28504, MR 0245489
Reference: [8] Speed, T. P.: Spaces of ideals of distributive lattices II. Minimal prime ideals.J. Austral. Math. Soc. 18 (1974), 54–72. Zbl 0294.06009, MR 0354476, 10.1017/S144678870001911X
.

Files

Files Size Format View
ArchMathRetro_048-2012-2_2.pdf 424.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo