Title:
|
Lower bound and upper bound of operators on block weighted sequence spaces (English) |
Author:
|
Lashkaripour, Rahmatollah |
Author:
|
Talebi, Gholomraza |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
62 |
Issue:
|
2 |
Year:
|
2012 |
Pages:
|
293-304 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $A=(a_{n,k})_{n,k\geq 1}$ be a non-negative matrix. Denote by $L_{v,p,q,F}(A)$ the supremum of those $L$ that satisfy the inequality $$ \|Ax\|_{v,q,F} \ge L\| x\|_{v,p,F}, $$ where $x\geq 0$ and $x\in l_p(v,F)$ and also $v=(v_n)_{n=1}^\infty $ is an increasing, non-negative sequence of real numbers. If $p=q$, we use $L_{v,p,F}(A)$ instead of $L_{v,p,p,F}(A)$. In this paper we obtain a Hardy type formula for $L_{v,p,q,F}(H_\mu )$, where $H_\mu $ is a Hausdorff matrix and $0<q\leq p\leq 1$. Another purpose of this paper is to establish a lower bound for $\|A_{W}^{NM} \|_{v,p,F}$, where $A_{W}^{NM}$ is the Nörlund matrix associated with the sequence $W=\{w_n\}_{n=1}^\infty $ and $1<p<\infty $. Our results generalize some works of Bennett, Jameson and present authors. (English) |
Keyword:
|
lower bound |
Keyword:
|
weighted sequence space |
Keyword:
|
Hausdorff matrices |
Keyword:
|
Euler matrices |
Keyword:
|
Cesàro matrices |
Keyword:
|
Hölder matrices |
Keyword:
|
Gamma matrices |
MSC:
|
26D15 |
MSC:
|
40G05 |
MSC:
|
46A45 |
MSC:
|
47A30 |
MSC:
|
54D55 |
idZBL:
|
Zbl 1265.26074 |
idMR:
|
MR2990178 |
DOI:
|
10.1007/s10587-012-0031-8 |
. |
Date available:
|
2012-06-08T09:34:20Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142829 |
. |
Reference:
|
[1] Azimi, P.: A new class of Banach sequence spaces.Bull. Iran. Math. Soc. 28 (2002), 57-68. Zbl 1035.46006, MR 1992259 |
Reference:
|
[2] Bennett, G.: Inequalities complimentary to Hardy.Q. J. Math. Oxf. II, Ser. 49 (1998), 395-432. Zbl 0929.26013, MR 1652236, 10.1093/qmathj/49.4.395 |
Reference:
|
[3] Bennett, G.: Factorizing the classical inequalities.Mem. Am. Math. Soc. 576 (1996), 1-13. Zbl 0857.26009, MR 1317938 |
Reference:
|
[4] Bennett, G.: Lower bounds for matrices.Linear Algebra Appl. 82 (1986), 81-98. Zbl 0601.15014, MR 0858964 |
Reference:
|
[5] Borwein, D.: Nörlund operators on $l_p$.Can. Math. Bull. 36 (1993), 8-14. MR 1205888, 10.4153/CMB-1993-002-x |
Reference:
|
[6] Chen, Ch.-P., Wang, K.-Z.: Lower bounds of Copson type for Hausdorff matrices. II.Linear Algebra Appl. 422 (2007), 563-573. Zbl 1135.15015, MR 2305141, 10.1016/j.laa.2006.11.015 |
Reference:
|
[7] Foroutannia, D.: Upper bound and lower bound for matrix operators on weighted sequence space.PhD. Thesis Zahedan (2007). |
Reference:
|
[8] Jameson, G. J. O., Lashkaripour, R.: Norms of certain operators on weighted $l_p$ spaces and Lorentz sequence spaces.JIPAM, J. Inequal. Pure Appl. Math. 3 (2002), Electronic only. Zbl 1021.47019, MR 1888921 |
Reference:
|
[9] jun., P. D. Johnson, Mohapatra, R. N., Ross, D.: Bounds for the operator norms of some Nörlund matrices.Proc. Am. Math. Soc. 124 (1996), 543-547. Zbl 0846.40007, MR 1301506, 10.1090/S0002-9939-96-03081-X |
Reference:
|
[10] Lashkaripour, R., Foroutannia, D.: Lower bounds for matrices on block weighted sequence spaces. I.Czech. Math. J. 59 (134) (2009), 81-94. Zbl 1217.47065, MR 2486617, 10.1007/s10587-009-0006-6 |
Reference:
|
[11] Lashkaripour, R., Foroutannia, D.: Computation of matrix operators bounds with applying new extension of Hardy inequality on weighted sequence spaces. I.Lobachevskii J. Math. 30 (2009), 40-45. Zbl 1177.26039, MR 2506053, 10.1134/S1995080209010065 |
Reference:
|
[12] Lashkaripour, R., Talebi, G.: Lower bound of Copson type for Hausdorff matrices on weighted sequence spaces.J. Sci., Islam. Repub. Iran 22 (2011), 153-157. MR 2884149 |
Reference:
|
[13] Lashkaripour, R., Talebi, G.: Lower bound for the norm of lower triangular matrices on block weighted sequence spaces.J. Math. Inequal. 5 (2011), 33-38. Zbl 1211.26018, MR 2799056, 10.7153/jmi-05-04 |
Reference:
|
[14] Lashkaripour, R., Talebi, G.: Bounds for the operator norms of some Nörlund matrices on weighted sequence spaces.Preprint. |
. |