Full entry |
PDF
(0.3 MB)
Feedback

simple algebra; idempotent; group

References:

[1] Grech, M.: **Irreducible varieties of commutative semigroups**. J. Algebra 261 (2003), 207-228. DOI 10.1016/S0021-8693(02)00674-9 | MR 1967162 | Zbl 1026.20040

[2] Grech, M.: **Automorphism of the lattice of equational theories of commutative semigroups**. Trans. Am. Math. Soc. 361 (2009), 3435-3462. DOI 10.1090/S0002-9947-09-04849-1 | MR 2491887

[3] Ježek, J.: **The lattice of equational theories. Part I: Modular elements**. Czech. Math. J. 31 (1981), 127-152. MR 0604120

[4] Ježek, J.: **The lattice of equational theories. Part II: The lattice of full sets of terms**. Czech. Math. J. 31 (1981), 573-603. MR 0631604

[5] Ježek, J.: **The lattice of equational theories. Part III: Definability and automorphisms**. Czech. Math. J. 32 (1982), 129-164. MR 0646718

[6] Ježek, J.: **The lattice of equational theories. Part IV: Equational theories of finite algebras**. Czech. Math. J. 36 (1986), 331-341. MR 0831318

[7] Ježek, J.: **The ordering of commutative terms**. Czech. Math. J. 56 (2006), 133-154. DOI 10.1007/s10587-006-0010-z | MR 2207011 | Zbl 1164.03318

[8] Ježek, J., McKenzie, R.: **Definability in the lattice of equational theories of semigroups**. Semigroup Forum 46 (1993), 199-245. DOI 10.1007/BF02573566 | MR 1200214 | Zbl 0782.20051

[9] Kisielewicz, A.: **Definability in the lattice of equational theories of commutative semigroups**. Trans. Am. Math. Soc. 356 (2004), 3483-3504. DOI 10.1090/S0002-9947-03-03351-8 | MR 2055743 | Zbl 1050.08005

[10] McKenzie, R. N., McNulty, G. F., Taylor, W. F.: **Algebras, Lattices, Varieties. Volume I**. Wadsworth & Brooks/Cole Monterey (1987). MR 0883644 | Zbl 0611.08001

[11] Tarski, A.: **Equational logic and equational theories of algebras. Proc. Logic Colloq., Hannover 1966**. Contrib. Math. Logic (1968), 275-288. MR 0237410

[12] Vernikov, B. M.: **Proofs of definability of some varieties and sets of varieties of semigroups**. Preprint. MR 2898768