Previous |  Up |  Next

Article

Title: Homogenization of monotone parabolic problems with several temporal scales (English)
Author: Persson, Jens
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 3
Year: 2012
Pages: 191-214
Summary lang: English
.
Category: math
.
Summary: In this paper we homogenize monotone parabolic problems with two spatial scales and any number of temporal scales. Under the assumption that the spatial and temporal scales are well-separated in the sense explained in the paper, we show that there is an H-limit defined by at most four distinct sets of local problems corresponding to slow temporal oscillations, slow resonant spatial and temporal oscillations (the “slow” self-similar case), rapid temporal oscillations, and rapid resonant spatial and temporal oscillations (the ``rapid'' self-similar case), respectively. (English)
Keyword: homogenization
Keyword: $H$-convergence
Keyword: multiscale convergence
Keyword: parabolic
Keyword: monotone
Keyword: parabolic problem
MSC: 35B05
MSC: 35B27
MSC: 35K59
idZBL: Zbl 1265.35018
idMR: MR2984600
DOI: 10.1007/s10492-012-0013-z
.
Date available: 2012-06-08T09:57:06Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/142850
.
Reference: [1] Allaire, G.: Homogenization and two-scale convergence.SIAM J. Math. Anal. 23 (1992), 1482-1518. Zbl 0770.35005, MR 1185639, 10.1137/0523084
Reference: [2] Allaire, G., Briane, M.: Multiscale convergence and reiterated homogenisation.Proc. R. Soc. Edinb., Sect. A 126 (1996), 297-342. Zbl 0866.35017, MR 1386865, 10.1017/S0308210500022757
Reference: [3] Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures. Studies in Mathematics and its Applications, Vol. 5.North-Holland Publishing Amsterdam-New York-Oxford (1978). MR 0503330
Reference: [4] Evans, L. C.: The perturbed test function method for viscosity solutions of nonlinear PDE.Proc. R. Soc. Edinb., Sect. A 111 (1989), 359-375. Zbl 0679.35001, MR 1007533, 10.1017/S0308210500018631
Reference: [5] Flodén, L., Olsson, M.: Reiterated homogenization of some linear and nonlinear monotone parabolic operators.Can. Appl. Math. Q. 14 (2006), 149-183. Zbl 1142.35331, MR 2302654
Reference: [6] Flodén, L., Olsson, M.: Homogenization of some parabolic operators with several time scales.Appl. Math. 52 (2007), 431-446. Zbl 1164.35315, MR 2342599, 10.1007/s10492-007-0025-2
Reference: [7] Flodén, L., Holmbom, A., Olsson, M., Svanstedt, N.: Reiterated homogenization of monotone parabolic problems.Ann. Univ. Ferrara, Sez. VII Sci. Mat. 53 (2007), 217-232. Zbl 1180.35076, MR 2358224, 10.1007/s11565-007-0014-0
Reference: [8] Holmbom, A.: Some modes of convergence and their application to homogenization and optimal composites design.Doctoral thesis 1996:208 D Department of Mathematics, Luleå University Luleå (1996).
Reference: [9] Holmbom, A.: Homogenization of parabolic equations---an alternative approach and some corrector-type results.Appl. Math. 42 (1997), 321-343. Zbl 0898.35008, MR 1467553, 10.1023/A:1023049608047
Reference: [10] Holmbom, A., Silfver, J.: On the convergence of some sequences of oscillating functionals.WSEAS Trans. Math. 5 (2006), 951-956 \MR 2241788. MR 2241788
Reference: [11] Holmbom, A., Svanstedt, N., Wellander, N.: Multiscale convergence and reiterated homogenization of parabolic problems.Appl. Math. 50 (2005), 131-151. Zbl 1099.35011, MR 2125155, 10.1007/s10492-005-0009-z
Reference: [12] Kun'ch, R. N., Pankov, A. A.: G-convergence of the monotone parabolic operators.Dokl. Akad. Nauk Ukr. SSR, Ser. A (1986), 8-10 Russian. Zbl 0621.35005, MR 0897902
Reference: [13] Lions, J.-L., Lukkassen, D., Persson, L.-E., Wall, P.: Reiterated homogenization of nonlinear monotone operators.Chin. Ann. Math., Ser. B 22 (2001), 1-12. Zbl 0979.35047, MR 1823125, 10.1142/S0252959901000024
Reference: [14] Mascarenhas, M. L., Toader, A.-M.: Scale convergence in homogenization.Numer. Funct. Anal. Optimization 22 (2001), 127-158. Zbl 0995.49013, MR 1841866, 10.1081/NFA-100103791
Reference: [15] Murat, F.: H-convergence.Séminaire d'analyse fonctionelle et numérique de l'Université d'Alger (1978).
Reference: [16] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization.SIAM J. Math. Anal. 20 (1989), 608-623. Zbl 0688.35007, MR 0990867, 10.1137/0520043
Reference: [17] Nguetseng, G.: Homogenization structures and applications. I.Z. Anal. Anwend. 22 (2003), 73-107. Zbl 1045.46031, MR 1962077, 10.4171/ZAA/1133
Reference: [18] Nguetseng, G., Woukeng, J. L.: Deterministic homogenization of parabolic monotone operators with time dependent coefficients.Electron. J. Differ. Equ., paper No. 82 (2004), Electronic only. Zbl 1058.35025, MR 2075421
Reference: [19] Nguetseng, G., Woukeng, J. L.: $\Sigma$-convergence of nonlinear parabolic operators.Nonlinear Anal., Theory Methods Appl. 66 (2007), 968-1004. Zbl 1116.35011, MR 2288445, 10.1016/j.na.2005.12.035
Reference: [20] Persson, J.: Homogenisation of monotone parabolic problems with several temporal scales: The detailed arXiv e-print version.arXiv:1003.5523 [math.AP].
Reference: [21] Spagnolo, S.: Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore.Ann. Sc. Norm. Sup. Pisa, Sci. Fis. Mat., III. Ser. 21 (1967), 657-699 Italian. Zbl 0153.42103, MR 0225015
Reference: [22] Svanstedt, N.: G-convergence and homogenization of sequences of linear and nonlinear partial differential operators.Doctoral thesis 1992:105 D Department of Mathematics, Luleå University Luleå (1992).
Reference: [23] Tartar, L.: Cours peccot.Collège de France (1977), unpublished, partially written in \cite{Mura78}.
Reference: [24] Tartar, L.: Quelques remarques sur l'homogénéisation.In: Functional Analysis and Numerical Analysis, Proc. Japan-France Seminar 1976 M. Fujita Society for the Promotion of Science (1978), 468-482.
Reference: [25] Woukeng, J. L.: Periodic homogenization of nonlinear non-monotone parabolic operators with three time scales.Ann. Mat. Pura Appl. 189 (2010), 357-379. Zbl 1213.35067, MR 2657414, 10.1007/s10231-009-0112-y
.

Files

Files Size Format View
AplMat_57-2012-3_2.pdf 355.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo