| Title: | Homogenization of monotone parabolic problems with several temporal scales (English) | 
| Author: | Persson, Jens | 
| Language: | English | 
| Journal: | Applications of Mathematics | 
| ISSN: | 0862-7940 (print) | 
| ISSN: | 1572-9109 (online) | 
| Volume: | 57 | 
| Issue: | 3 | 
| Year: | 2012 | 
| Pages: | 191-214 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | In this paper we homogenize monotone parabolic problems with two spatial scales and any number of temporal scales. Under the assumption that the spatial and temporal scales are well-separated in the sense explained in the paper, we show that there is an H-limit defined by at most four distinct sets of local problems corresponding to slow temporal oscillations, slow resonant spatial and temporal oscillations (the “slow” self-similar case), rapid temporal oscillations, and rapid resonant spatial and temporal oscillations (the ``rapid'' self-similar case), respectively. (English) | 
| Keyword: | homogenization | 
| Keyword: | $H$-convergence | 
| Keyword: | multiscale convergence | 
| Keyword: | parabolic | 
| Keyword: | monotone | 
| Keyword: | parabolic problem | 
| MSC: | 35B05 | 
| MSC: | 35B27 | 
| MSC: | 35K59 | 
| idZBL: | Zbl 1265.35018 | 
| idMR: | MR2984600 | 
| DOI: | 10.1007/s10492-012-0013-z | 
| . | 
| Date available: | 2012-06-08T09:57:06Z | 
| Last updated: | 2020-07-02 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/142850 | 
| . | 
| Reference: | [1] Allaire, G.: Homogenization and two-scale convergence.SIAM J. Math. Anal. 23 (1992), 1482-1518. Zbl 0770.35005, MR 1185639, 10.1137/0523084 | 
| Reference: | [2] Allaire, G., Briane, M.: Multiscale convergence and reiterated homogenisation.Proc. R. Soc. Edinb., Sect. A 126 (1996), 297-342. Zbl 0866.35017, MR 1386865, 10.1017/S0308210500022757 | 
| Reference: | [3] Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures. Studies in Mathematics and its Applications, Vol. 5.North-Holland Publishing Amsterdam-New York-Oxford (1978). MR 0503330 | 
| Reference: | [4] Evans, L. C.: The perturbed test function method for viscosity solutions of nonlinear PDE.Proc. R. Soc. Edinb., Sect. A 111 (1989), 359-375. Zbl 0679.35001, MR 1007533, 10.1017/S0308210500018631 | 
| Reference: | [5] Flodén, L., Olsson, M.: Reiterated homogenization of some linear and nonlinear monotone parabolic operators.Can. Appl. Math. Q. 14 (2006), 149-183. Zbl 1142.35331, MR 2302654 | 
| Reference: | [6] Flodén, L., Olsson, M.: Homogenization of some parabolic operators with several time scales.Appl. Math. 52 (2007), 431-446. Zbl 1164.35315, MR 2342599, 10.1007/s10492-007-0025-2 | 
| Reference: | [7] Flodén, L., Holmbom, A., Olsson, M., Svanstedt, N.: Reiterated homogenization of monotone parabolic problems.Ann. Univ. Ferrara, Sez. VII Sci. Mat. 53 (2007), 217-232. Zbl 1180.35076, MR 2358224, 10.1007/s11565-007-0014-0 | 
| Reference: | [8] Holmbom, A.: Some modes of convergence and their application to homogenization and optimal composites design.Doctoral thesis 1996:208 D Department of Mathematics, Luleå University Luleå (1996). | 
| Reference: | [9] Holmbom, A.: Homogenization of parabolic equations---an alternative approach and some corrector-type results.Appl. Math. 42 (1997), 321-343. Zbl 0898.35008, MR 1467553, 10.1023/A:1023049608047 | 
| Reference: | [10] Holmbom, A., Silfver, J.: On the convergence of some sequences of oscillating functionals.WSEAS Trans. Math. 5 (2006), 951-956 \MR 2241788. MR 2241788 | 
| Reference: | [11] Holmbom, A., Svanstedt, N., Wellander, N.: Multiscale convergence and reiterated homogenization of parabolic problems.Appl. Math. 50 (2005), 131-151. Zbl 1099.35011, MR 2125155, 10.1007/s10492-005-0009-z | 
| Reference: | [12] Kun'ch, R. N., Pankov, A. A.: G-convergence of the monotone parabolic operators.Dokl. Akad. Nauk Ukr. SSR, Ser. A (1986), 8-10 Russian. Zbl 0621.35005, MR 0897902 | 
| Reference: | [13] Lions, J.-L., Lukkassen, D., Persson, L.-E., Wall, P.: Reiterated homogenization of nonlinear monotone operators.Chin. Ann. Math., Ser. B 22 (2001), 1-12. Zbl 0979.35047, MR 1823125, 10.1142/S0252959901000024 | 
| Reference: | [14] Mascarenhas, M. L., Toader, A.-M.: Scale convergence in homogenization.Numer. Funct. Anal. Optimization 22 (2001), 127-158. Zbl 0995.49013, MR 1841866, 10.1081/NFA-100103791 | 
| Reference: | [15] Murat, F.: H-convergence.Séminaire d'analyse fonctionelle et numérique de l'Université d'Alger (1978). | 
| Reference: | [16] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization.SIAM J. Math. Anal. 20 (1989), 608-623. Zbl 0688.35007, MR 0990867, 10.1137/0520043 | 
| Reference: | [17] Nguetseng, G.: Homogenization structures and applications. I.Z. Anal. Anwend. 22 (2003), 73-107. Zbl 1045.46031, MR 1962077, 10.4171/ZAA/1133 | 
| Reference: | [18] Nguetseng, G., Woukeng, J. L.: Deterministic homogenization of parabolic monotone operators with time dependent coefficients.Electron. J. Differ. Equ., paper No. 82 (2004), Electronic only. Zbl 1058.35025, MR 2075421 | 
| Reference: | [19] Nguetseng, G., Woukeng, J. L.: $\Sigma$-convergence of nonlinear parabolic operators.Nonlinear Anal., Theory Methods Appl. 66 (2007), 968-1004. Zbl 1116.35011, MR 2288445, 10.1016/j.na.2005.12.035 | 
| Reference: | [20] Persson, J.: Homogenisation of monotone parabolic problems with several temporal scales: The detailed arXiv e-print version.arXiv:1003.5523 [math.AP]. | 
| Reference: | [21] Spagnolo, S.: Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore.Ann. Sc. Norm. Sup. Pisa, Sci. Fis. Mat., III. Ser. 21 (1967), 657-699 Italian. Zbl 0153.42103, MR 0225015 | 
| Reference: | [22] Svanstedt, N.: G-convergence and homogenization of sequences of linear and nonlinear partial differential operators.Doctoral thesis 1992:105 D Department of Mathematics, Luleå University Luleå (1992). | 
| Reference: | [23] Tartar, L.: Cours peccot.Collège de France (1977), unpublished, partially written in \cite{Mura78}. | 
| Reference: | [24] Tartar, L.: Quelques remarques sur l'homogénéisation.In: Functional Analysis and Numerical Analysis, Proc. Japan-France Seminar 1976 M. Fujita Society for the Promotion of Science (1978), 468-482. | 
| Reference: | [25] Woukeng, J. L.: Periodic homogenization of nonlinear non-monotone parabolic operators with three time scales.Ann. Mat. Pura Appl. 189 (2010), 357-379. Zbl 1213.35067, MR 2657414, 10.1007/s10231-009-0112-y | 
| . |